Melatonin is widely observed in the female reproductive system and regulates trophoblast cell functions, but its effects on embryo implantation and underlying mechanisms are not well understood. By constructing an in vitro embryo culture model, we found that melatonin enhances migration and implantation in human and mouse trophoblast cells. It also significantly promoted HTR-8/SVneo cell proliferation, inhibited apoptosis, enhanced migration, and mitigated oxidative damage. Further investigation revealed that melatonin promoted trophoblast cell migration and increased the in vitro implantation rate of HTR-8/SVneo spheroids by promotes epithelial-mesenchymal transition (EMT) via the growth differentiation factor 15 (GDF15)-mothers against decapentaplegic homolog 2/3 (SMAD2/3) pathway. Additionally, melatonin increased the levels of glutathione peroxidase 4 (GPX4) and glutathione (GSH) in HTR-8/SVneo cells by upregulating the expression of GDF15, inhibiting reactive oxygen species (ROS) accumulation, and increasing mitochondrial membrane potential, thus suppressing apoptosis during oxidative stress. In conclusion, melatonin promotes EMT in trophoblast cells via GDF15-SMAD2/3 pathway and partially induces the expression of GPX4 through GDF15 to enhance oxidative damage resistance in trophoblast cells. These findings highlight melatonin's regulatory role in embryo implantation and suggest new avenues for exploring its biological effects in reproduction and clinical applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11890731 | PMC |
http://dx.doi.org/10.1038/s42003-025-07834-1 | DOI Listing |
Eur J Cancer Prev
March 2025
Department of Oncology and Hemato-Oncology, University of Milan.
Endometriosis is one of the most common gynecological benign disease. Epidemiological evidence suggests a potential association between endometriosis and cancer risk. Accumulating evidence highlighted the risk of ovarian cancer, particularly endometrioid and clear cell subtypes.
View Article and Find Full Text PDFAdv Healthc Mater
March 2025
Molecular Diagnostic Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou First People's Hospital, Hangzhou, 310006, China.
Due to the complexity of the tumor microenvironment (TME), current tumor treatments cannot achieve satisfactory results. A nanocomposite material, UCNPs@PVP-Hemin-GOx@CaCO (UPHGC NPs) is developed that responds to the TME and controls release to achieve multimodal synergistic therapy in tumor tissues. UPHGC NPs mediate photodynamic therapy (PDT), chemodynamic therapy (CDT), and starvation therapy (ST) synergistically, ultimately inducing self-amplification of ferroptosis.
View Article and Find Full Text PDFSmall
March 2025
State Key Laboratory of Advanced Medical Materials and Devices, Medical College, Tianjin University, Tianjin, 300072, China.
Irreversible electroporation (IRE) is a minimally invasive, non-thermal tumor ablation technique that induces nanoscale membrane perforation, leading to immunogenic cell death (ICD). However, IRE alone is limited by uneven electric field attenuation, incomplete tumor ablation, and the immunosuppressive nature of the tumor microenvironment. To address these challenges, a multifunctional nanomaterial, vermiculite nanosheets/calcium peroxide nanosheets (VMT/CaO NSs), is developed to enhance the efficacy of IRE.
View Article and Find Full Text PDFNanomaterials (Basel)
February 2025
School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-Lane Xiangshan, Hangzhou 310024, China.
Oxidative stress, resulting from an imbalance between reactive oxygen species (ROS) and antioxidants, is a critical factor in the pathogenesis of a wide range of diseases. The excessive accumulation of ROS can cause severe cellular damage, leading to tissue dysfunction and disease progression. The development of nanomaterials with antioxidant properties presents a promising strategy for addressing this challenge.
View Article and Find Full Text PDFNanomaterials (Basel)
February 2025
School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
Acute myocardial infarction, a leading cause of death globally, is often associated with cardiometabolic disorders such as atherosclerosis and metabolic syndrome. Metabolic treatment of these disorders can improve cardiac outcomes, as exemplified by the GLP-1 agonist semaglutide. Fibroblast growth factor 21 (FGF21), a novel metabolic regulator, plays pivotal roles in lipid mobilization and energy conversion, reducing lipotoxicity, inflammation, mitochondrial health, and subsequent tissue damage in organs such as the liver, pancreas, and heart.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!