Polar skyrmions are topologically nontrivial polarization textures that demonstrate exotic physical phenomena and novel memory applications. Thus far, these textures have primarily been reported in oxide-ferroelectric-based epitaxial heterostructures because their stabilization requires an elastic energy penalty from the epitaxial strains. Here, without the epitaxial-strain engineering, we discover polar skyrmion bubbles in stand-alone van der Waals ferroelectric CuInPS crystal through the combination of piezoelectric force microscopy, high-resolution transmission electron microscopy, and phase-field simulations. In a thick CuInPS flake of over -100 nm, skyrmion bubbles feature an elliptical hedgehog-like state with center-divergent or center-convergent configurations. Progressively thinning the flake thickness to -8 nm allows a topological transition from elliptical to circular skyrmionic patterns. Interestingly, the skyrmions can be switched with the change in helicity by probe-applied electrical and mechanical stimuli, which is distinct from the creation and annihilation of other reported skyrmions. Both theoretical and experimental data proves that the formation and thickness-dependence of skyrmion textures primarily stem from charge-related energy penalty. This work opens up a new material system (i.e., two-dimensional layered ferroionic materials) for exploring uncharted polar-topology physics and prospective neuromorphic devices.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11890734 | PMC |
http://dx.doi.org/10.1038/s41467-025-57714-9 | DOI Listing |
Nat Commun
March 2025
Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
Polar skyrmions are topologically nontrivial polarization textures that demonstrate exotic physical phenomena and novel memory applications. Thus far, these textures have primarily been reported in oxide-ferroelectric-based epitaxial heterostructures because their stabilization requires an elastic energy penalty from the epitaxial strains. Here, without the epitaxial-strain engineering, we discover polar skyrmion bubbles in stand-alone van der Waals ferroelectric CuInPS crystal through the combination of piezoelectric force microscopy, high-resolution transmission electron microscopy, and phase-field simulations.
View Article and Find Full Text PDFACS Nano
January 2025
School of Physical Sciences, National Institute of Science Education and Research, HBNI, Jatni 752050, India.
Topological magnetic skyrmions with helicity state degrees of freedom in centrosymmetric magnets possess great potential for advanced spintronics applications and quantum computing. Till date, the skyrmion study in this class of materials mostly remains focused to collinear ferromagnets with uniaxial magnetic anisotropy. Here, we present a combined theoretical and experimental study on the competing magnetic exchange-induced evolution of noncollinear magnetic ground states and its impact on the skyrmion formation in a series of centrosymmetric hexagonal noncollinear magnets, MnFeCoGe.
View Article and Find Full Text PDFSci Rep
January 2025
Laboratory for Mesoscopic Systems, Department of Materials, ETH Zurich, 8093, Zurich, Switzerland.
We present a study on nanoscale skyrmionic spin textures in [Formula: see text], a rare-earth complex noncollinear ferromagnet. We confirm, using X-ray microscopy, that [Formula: see text] can host lattices of metastable skyrmion bubbles at room temperature in the absence of a magnetic field, after applying a suitable field cooling protocol. The skyrmion bubbles are robust against temperature changes from room temperature to 330 K.
View Article and Find Full Text PDFNano Lett
January 2025
Anhui Province Key Laboratory of Low-Energy Quantum Materials and Devices, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China.
We report deterministic operations on single dipolar skyrmions confined in nanostructured cuboids by using in-plane currents. We achieve highly reversible writing and deleting of skyrmions in a simple cuboid without any artificial defects or pinning sites. The current-induced creation of skyrmions is well-understood through the spin-transfer torque acting on surface spin twists of the spontaneous 3D ferromagnetic state, caused by the magnetic dipole-dipole interaction of the uniaxial FeSn magnet with a low-quality factor.
View Article and Find Full Text PDFMicron
March 2025
University of Science and Technology of China, Hefei 230026, China; Anhui Key Laboratory of Low-Energy Quantum Materials and Devices, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei 230031, China; High Magnetic Field Laboratory of Anhui Province, Hefei 230031, China; Anhui Laboratory of Advanced Photon Science and Technology, University of Science and Technology of China, Hefei 230026, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!