Lysosome-mediated autophagy (including mitophagy) is crucial for cell survival and homeostasis. Although the mechanisms of lysosome activation during stress are well recognized, the epigenetic regulation of lysosomal gene expression remains largely unexplored. Menin, encoded by the MEN1 gene, is a chromatin-related protein that is widely involved in gene transcription via histone modifications. Here, we report that menin regulates the transcription of specific lysosomal genes, such as CTSB, CTSE, and TFE3, through MLL-mediated H3K4me3 reprogramming, which is necessary for maintaining lysosomal homeostasis. Menin also directly controls the expression of SQSTM1 and MAP1LC3B to maintain autophagic flux in a manner independent of AMPK/mTORC1 pathways. Furthermore, loss of menin led to mitochondrial dysfunction, elevated levels of reactive oxygen species (ROS), and genome instability. In genetically engineered mouse models, Men1 deficiency resulted in severe lysosomal and mitochondrial dysfunction and an impaired self-clearance ability, which further led to metabolite accumulation. SP2509, a histone demethylase inhibitor, effectively reversed the downregulation of lysosomal and mitochondrial genes caused by loss of Men1. Our study confirms the previously unrecognized biological and mechanistic importance of menin-mediated H3K4me3 in maintaining organelle homeostasis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11890858PMC
http://dx.doi.org/10.1038/s41419-025-07489-0DOI Listing

Publication Analysis

Top Keywords

lysosomal mitochondrial
12
mitochondrial dysfunction
8
lysosomal
6
menin
5
menin maintains
4
maintains lysosomal
4
mitochondrial
4
homeostasis
4
mitochondrial homeostasis
4
homeostasis epigenetic
4

Similar Publications

Although every cell biologist knows the importance of selecting the right growth conditions and it is well known that the composition of growth medium may vary depending on a product brand or lot affecting many cellular processes, still those effects are poorly systematized. We addressed this issue by comparing the effect of 12 fetal bovine sera (FBS) and eight growth media from different brands on the morphological and functional parameters of five cell types: lung adenocarcinoma, neuroblastoma, glioblastoma, embryonic kidney, and colorectal cancer cells. Using high-throughput imaging, we compared cell proliferation; performed morphological profiling based on the imaging of 561,519 cells; measured extracellular regulated kinases (ERK1/2) activity, mitochondria potential, and lysosome accumulation; and compared cell sensitivity to drugs, response to EGF stimulation, and ability to differentiate.

View Article and Find Full Text PDF

Aging is a progressive and irreversible process, serving as the primary risk factor for neurodegenerative disorders. This study aims to identify the molecular mechanisms underlying physiological aging within the substantia nigra, which is primarily affected by Parkinson's disease, and to draw potential conclusions on the earliest events leading to neurodegeneration in this specific brain region. The characterization of essential stages in aging progress can enhance knowledge of the mechanisms that promote the development of Parkinson's disease.

View Article and Find Full Text PDF

A lipid droplet-targeted probe for imaging of lipid metabolism disorders during mitochondrial myopathy.

Talanta

March 2025

State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China; Shenzhen Research Institute of Shandong University, Shenzhen, 518057, China. Electronic address:

Lipid metabolism is closely related to various biological processes in cells. The accumulation of Lipid droplets (LDs) is a typical manifestation of certain metabolic diseases, such as mitochondrial myopathy, which shows a significant increase in LDs. The accumulation of LDs can exacerbate the progression of disease, and lysosomes selectively degrade LDs to cope with this phenomenon.

View Article and Find Full Text PDF

Background: In the human placenta, we have detected the MPs by Raman microspectroscopy analysis and, for the first time, with transmission electron microscopy. MPs fragments have been localized in different compartments of placental tissue, free in the cytoplasm and within organelles like lysosomes. Moreover, their presence has been correlated with ultrastructural alterations of some cell organelles, typical of metabolic stress, mainly dilated rough endoplasmic reticulum and numerous swollen electrodense mitochondria, as well as signs derived from involuting organelles.

View Article and Find Full Text PDF

A positive feedback loop between SMAD3 and PINK1 in regulation of mitophagy.

Cell Discov

March 2025

Faculty of Healthy Sciences, Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Macau, China.

PTEN-induced kinase-1 (PINK1) is a crucial player in selective clearance of damaged mitochondria via the autophagy-lysosome pathway, a process termed mitophagy. Previous studies on PINK1 mainly focused on its post-translational modifications, while the transcriptional regulation of PINK1 is much less understood. Herein, we reported a novel mechanism in control of PINK1 transcription by SMAD Family Member 3 (SMAD3), an essential component of the transforming growth factor beta (TGFβ)-SMAD signaling pathway.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!