Severity: Warning
Message: file_get_contents(https://...@remsenmedia.com&api_key=81853a771c3a3a2c6b2553a65bc33b056f08&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
SLAS Technol
Xingtai People's Hospital Obstetrics Department, Xingtai City, Hebei Province, China. 054000. Electronic address:
Published: March 2025
Postpartum pain encompasses a range of physical and emotional discomforts, often influenced by hormonal changes, physical recovery, and individual psychological states. The complex interactions between the variables can make it difficult for traditional diagnostic techniques to fully capture, creating inadequacies and inefficient management techniques. The aims to develop a comprehensive diagnostic and management framework for postpartum pain by integrating Natural Language Processing (NLP), electrophysiological data, and Traditional Chinese Medicine (TCM) principles. The seeks to enhance the accuracy of postpartum pain diagnosis, uncover meaningful correlations between TCM diagnoses and physiological markers, and optimize personalized treatment strategies. The focuses on analyzing textual data from patient-reported symptoms, medical records, and TCM diagnosis notes. Data pre-processing involves text cleaning and tokenization, followed by feature extraction using Term Frequency-Inverse Document Frequency (TF-IDF) to capture meaningful patterns. For diagnostics and management, a Refined Coyote Optimized Deep Recurrent Neural Network (RCO-DRNN) is employed to analyze and predict pain profiles, combining insights from TCM diagnoses with physiological markers. The results highlight the effectiveness of RCO-DRNN in accurately diagnosing pain types and offering personalized and holistic management strategies. This approach represents a significant advancement in integrating data-driven methodologies with traditional medical practices, providing a more comprehensive framework for postpartum pain management. The RCO-DRNN continuously beats the other models after thorough evaluation using metrics like MSE, MAE, and R, obtaining the lowest MSE (0.005), the smallest MAE (0.04), and the highest R (0.98).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.slast.2025.100267 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.