Long non-coding RNA LINC01232 promotes malignancy of prostate cancer through regulation of miR-181a-5p/IRS2 pathway: Ki-67 protein molecular structure and function.

Int J Biol Macromol

School of Pharmacy, Faculty of Medicine & Laboratory of Drug Discovery from Natural Resources and Industrialization, Macau University of Science and Technology, Macau 999078, China. Electronic address:

Published: March 2025

The expression level of long non-coding RNA (lncRNA), which functions in a manner similar to that of microrNA, has been confirmed to be closely associated with the regulatory network of multiple cancers. The primary focus of this particular research endeavor was to elucidate the mechanism of action of LINC01232 within the context of prostate cancer, specifically examining how it influences the proliferation of prostate cancer cells by interacting with the miR-181a-5p/IRS2 pathway. Additionally, the study aimed to delve deeper into the role of the Ki-67 protein within this intricate process. To assess the expression and localization of the Ki-67 protein in prostate cancer cells, researchers employed a combination of immunofluorescence and immunohistochemistry techniques. The expression level of Ki-67 protein decreased significantly after down-regulation of LINC01232, indicating that the cell proliferation activity was inhibited. Immunofluorescence and immunohistochemical experiments further confirmed that the expression of Ki-67 protein in prostate cancer cells was positively correlated with the expression of LINC01232.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2025.141817DOI Listing

Publication Analysis

Top Keywords

prostate cancer
20
ki-67 protein
20
cancer cells
12
long non-coding
8
non-coding rna
8
mir-181a-5p/irs2 pathway
8
expression level
8
protein prostate
8
prostate
5
cancer
5

Similar Publications

Background: Socioeconomic status and geographical location contribute to disparities in localized prostate cancer (PCa) treatment. We examined the impact of area of deprivation index (ADI) on initial treatment type for localized PCa in a North-American cohort.

Methods: We performed a retrospective analysis of patients diagnosed with localized PCa, treated within Henry Ford Health (HFH), between 1995 and 2022, with available ADI-data.

View Article and Find Full Text PDF

Background And Objective: Prostate cancer (PCa) is a significant global health concern, ranking as the second most prevalent cancer among men worldwide. Genetic factors, particularly germline pathogenic variants (PVs) in DNA repair genes (DRGs), play a crucial role in PCa predisposition. Our study aimed to assess patients' adherence to a targeted PCa screening program targeting high-risk individuals with DRG PVs and evaluate the potential reduction in biopsy and MRI rates by employing our screening protocol.

View Article and Find Full Text PDF

Cepharanthine hydrochloride: a novel ferroptosis-inducing agent for prostate cancer treatment.

Front Pharmacol

February 2025

Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China.

Background: Ferroptosis is an intracellular iron-dependent cell death that is distinct from apoptosis, necrosis, and autophagy. Increasing evidence indicated that ferroptosis plays a crucial role in suppressing tumors, thus providing new opportunities for cancer therapy. The drug cepharanthine, commonly used to treat leukopenia, has been discovered to function as an anticancer agent to multiple types of cancer via diverse mechanisms.

View Article and Find Full Text PDF

Introduction: Prostate cancer (PCa) is the most frequent diagnosed malignancy in male patients in Europe and radiation therapy (RT) is a main treatment option. However, current RT concepts for PCa have an imminent need to be rectified in order to modify the radiotherapeutic strategy by considering (i) the personal PCa biology in terms of radio resistance and (ii) the individual preferences of each patient.

Methods: To this end, a mechanistic multiscale model of prostate tumor response to external radiotherapeutic schemes, based on a discrete entity and discrete event simulation approach has been developed.

View Article and Find Full Text PDF

Hyperactivation of fatty acid biosynthesis holds promise as a targeted therapeutic strategy in prostate cancer (PCa). However, inhibiting these enzymes could potentially promote metastatic progression in various other cancers. Herein, we found that depletion of acetyl-CoA carboxylase 1 (encoded by ACACA), the enzyme responsible for the first and rate-limiting step of de novo fatty acid biosynthesis, facilitated epithelial-mesenchymal transition (EMT) and migration of PCa cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!