Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Antarctic krill (Euphausia superba) protein, as a type of high-quality protein resources, exhibits favorable bio-compatibility, environmental stability and other beneficial biological values. Nevertheless, the inadequate exploitation and low-value applications have impeded its development in the food industry. Based on the excellent amphiphilic structure of it, Antarctic krill protein, is expected to become a new material for constructing nutrient delivery system. In this study, salt-soluble Antarctic krill protein was used as carrying material to facilitate the delivery of astaxanthin hydrophobic nutrient factors by ultrasonic crushing and self-assembly. The micro-structure, bio-compatibility and antioxidant properties of astaxanthin nanoparticles were characterized and analyzed, so as to expand the application of Antarctic krill protein toward the field of nutrient delivery. The results showed that the astaxanthin nanoparticles prepared on the basis of salt-soluble Antarctic krill protein were spherically distributed, with favorable water solubility and thermal resistance. Furthermore, astaxanthin nanoparticles could enhance the biocompatibility of astaxanthin, and exhibited superior performance to free astaxanthin in inhibiting HO-induced ROS up-regulation and mitochondrial membrane potential depolarization in GES-1 cells. From the perspective of efficiency and multiple utilization of Antarctic krill resources, this study has established an innovative application of salt-soluble krill protein as a new direction of delivery materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2025.141813 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!