Ultrasound-assisted oligochitosan/casein complexes stabilized Pickering emulsion: Characterization, stability and its application for lutein delivery.

Int J Biol Macromol

Department of Food Science, Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of Infant Formula Food, State Administration for Market Regulation, Harbin 150030, PR China. Electronic address:

Published: March 2025

Lutein is a natural pigment with various beneficial biological activities, but its poor water solubility, chemical instability, and low bioavailability limit its application in food processing. In this study, modified casein (CAS-OCS NPs)-based Pickering emulsions were constructed under the combined effect of TGase-type glycation and ultrasound treatment as delivery systems for lutein fortification. Pickering emulsions based on CAS-OCS NPs enhanced the encapsulation efficiency of lutein (87.04 ± 0.30 %). The modification treatments improved the emulsifying properties, environmental stability, and digestive stability, as well as the delivery capability of lutein and antioxidant activity in simulated in vitro gastrointestinal digestion. After glycation modification, the lutein release rate of CAS-OCS NPs-based Pickering emulsions after in vitro digestion was higher than that of untreated casein-based Pickering emulsions, and the maximum release rate was 55.44 ± 0.50 %. Moreover, the CAS-OCS NPs-based Pickering emulsions showed improved lutein bioaccessibility, reaching the maximum value of 58.52 ± 0.52 %. These findings demonstrated the suitability of TGase-type glycation and ultrasound treatment for the preparation of Pickering emulsions to deliver bioactive compounds.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2025.141811DOI Listing

Publication Analysis

Top Keywords

pickering emulsions
24
cas-ocs nps-based
12
nps-based pickering
12
tgase-type glycation
8
glycation ultrasound
8
ultrasound treatment
8
release rate
8
pickering
7
lutein
7
emulsions
6

Similar Publications

Shellac-based nanoparticles provide highly stable Pickering emulsions.

Int J Biol Macromol

March 2025

Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel. Electronic address:

This study investigates the hypothesis that modified shellac nanoparticles (NPs) can effectively stabilize Pickering emulsions. Shellac, a natural polyester resin derived from the secretion of insects, was chemically modified using Jeffamine® M600 and Jeffamine® ED2003 to produce two NP types: Sh-M600 and Sh-ED2003, with sizes ranging from 127 to 183 nm. These NPs were used to stabilize oil-in-water emulsions with isopropyl myristate (IPM).

View Article and Find Full Text PDF

High internal phase Pickering emulsions (HIPPEs) hold broad application prospects in the modern food industry. This study developed a novel strategy for extracting starch from a non-conventional source (millet) followed by chemical modification to construct a ternary octenyl succinate millet starch/chitosan hydrochloride-epigallocatechin gallate (OMS/CHC-EGCG) complex to stabilize HIPPEs. The OMS/CHC-EGCG complex was assembled through electrostatic, hydrophobic, and hydrogen bonding interactions among OMS, CHC, and EGCG.

View Article and Find Full Text PDF

Curcumin-loaded Pickering emulsions stabilized by Spanish mackerel protein-pectin for ameliorating ulcerative colitis through barrier repair and anti-inflammatory effects.

Int J Biol Macromol

March 2025

State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Dalian Key Laboratory for Precision Nutrition, Dalian Polytechnic University, Dalian 116034, Liaoning, China. Electronic address:

Curcumin (Cur) has gained considerable recognition because of its anti-inflammatory and antioxidant effects as a bioactive compound, but its water insolubility and low bioaccessibility limit its application in food industry. In this study, Pickering emulsion stabilized by Spanish mackerel protein and pectin complex (SMP/PEC) was prepared to deliver curcumin, and its alleviating effects on DSS-induced ulcerative colitis (UC) were investigated. The emulsions stabilized by SMP/PEC 1:1 inhibited phase separation, had good rheological properties and the emulsions were stable at high temperatures, centrifugation, salt ions, and pH conditions.

View Article and Find Full Text PDF

In the current study, gelatinized potato starch was modified by decanoyl chloride and curcumin via esterification and pH-driven method at two pH levels (pH 8 and 12), respectively, followed by precipitation and formation of anionic nanoparticles. The effects of modifications on the various properties of starch nanoparticles were investigated. A decrease in mean particle diameter and branching degree as well as an increase in product mass, fatty acid substitution degree (0.

View Article and Find Full Text PDF

Background: Coconut milk encounters challenges related to global sustainability and its high fat content, which may potentially have adverse effects on health. Nanocrystal cellulose (NCC) has gained attention due to its amphiphilic nature, high aspect ratio and large elastic modulus, making it a beneficial natural stabilizer for emulsion stabilization. Recent studies have demonstrated that NCC plays a role in modulating gastrointestinal digestion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!