The Erk1/2-EGR1 signaling pathway is involved in lipopolysaccharide-induced transforming growth factor-beta 1 expression in mouse macrophages.

Microb Pathog

Jiangsu Province Engineering Research Center of Precision Animal Breeding, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China. Electronic address:

Published: March 2025

Numerous studies have demonstrated that lipopolysaccharide (LPS) stimulates TGF-β1 expression. Although studies have implicated the NF-κB/METTL3/METTL14 transactivation/m6A-dependent and AMPK-dependent signaling pathways are engaged in this process in a variety of cell types, the underlying regulatory mechanism in murine macrophages is still not fully understood. To address this issue, in vitro studies were performed using the murine macrophage cell line, RAW264.7. The results showed that LPS challenge resulted in a significant increase in TGF-β1 expression at both mRNA and protein levels. Subsequent studies revealed that the MAPK (including p38, Erk1/2, and JNK) and NF-κB signaling pathways were activated in response to LPS stimulation, but only blocking the Erk1/2 singling pathway completely abolished LPS-induced TGF-β1 expression. Further studies revealed that the levels of a downstream regulator of the Erk1/2 pathway, EGR1, were significantly increased after LPS treatment, and its knockdown significantly reduced LPS-induced Tgf-β1 expression levels. Finally, dual luciferase reporter and ChIP-PCR assays confirmed that EGR1 is a key transcription factor in the regulation of Tgf-β1 expression by binding to its promoter region in response to LPS stimulation. In conclusion, we elucidated the molecular events by which LPS regulates TGF-β1 expression in murine macrophages through the Erk1/2-EGR1 signaling pathway. These findings provide a conceptually novel pathway for LPS-induced TGF-β1 expression beyond the known NF-κB/METTL3/METTL14 transactivation/m6A-dependent and AMPK-dependent signaling pathways.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.micpath.2025.107453DOI Listing

Publication Analysis

Top Keywords

tgf-β1 expression
28
signaling pathways
12
lps-induced tgf-β1
12
erk1/2-egr1 signaling
8
signaling pathway
8
expression
8
expression studies
8
nf-κb/mettl3/mettl14 transactivation/m6a-dependent
8
transactivation/m6a-dependent ampk-dependent
8
ampk-dependent signaling
8

Similar Publications

Semiautomated Production of Cell-Free Biosensors.

ACS Synth Biol

March 2025

Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States.

Cell-free synthetic biology biosensors have potential as effective diagnostic technologies for the detection of chemical compounds, such as toxins and human health biomarkers. They have several advantages over conventional laboratory-based diagnostic approaches, including the ability to be assembled, freeze-dried, distributed, and then used at the point of need. This makes them an attractive platform for cheap and rapid chemical detection across the globe.

View Article and Find Full Text PDF

Background: Telenursing has become prevalent in providing care to diverse populations experiencing different health conditions both in Israel and globally. The nurse-patient relationship aims to improve the condition of individuals requiring health services.

Objectives: This study aims to evaluate nursing graduates' skills and knowledge regarding remote nursing care prior to and following a simulation-based telenursing training program in an undergraduate nursing degree.

View Article and Find Full Text PDF

Detoxifying reactive oxygen species (ROS) that accumulate under saline conditions is crucial for plant salt tolerance. The Salt Overly Sensitive (SOS) pathway functions upstream, while flavonoids act downstream, in ROS scavenging under salt stress. However, the potential crosstalk between the SOS pathway and flavonoids in regulating salt stress responses and the associated mechanisms remain largely unexplored.

View Article and Find Full Text PDF

It is known that inhibition of the endoplasmic reticulum transmembrane signaling protein (ERN1) suppresses the glioblastoma cells proliferation. The present study aims to investigate the impact of inhibition of ERN1 endoribonuclease and protein kinase activities on the , , and gene expression in U87MG glioblastoma cells with an intent to reveal the role of ERN1 signaling in the regulation of expression of these genes. The U87MG glioblastoma cells with inhibited ERN1 endoribonuclease (dnrERN1) or both enzymatic activities of ERN1 (endoribonuclease and protein kinase; dnERN1) were used.

View Article and Find Full Text PDF

For the effective growth of malignant tumors, including glioblastoma, the necessary factors involve endoplasmic reticulum (ER) stress, hypoxia, and the availability of nutrients, particularly glucose. The ER degradation enhancing alpha-mannosidase like protein 1 (EDEM1) is involved in ER-associated degradation (ERAD) targeting misfolded glycoproteins for degradation in an N-glycan-independent manner. EDEM1 was also identified as a new modulator of insulin synthesis and secretion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!