Functional involvement of RNAs and intrinsically disordered proteins in the assembly of heterochromatin.

Biochim Biophys Acta Gen Subj

Division of Chromatin Regulation, National Institute for Basic Biology, Okazaki 444-8585, Japan; Basic Biology Program, Graduate Institute for Advanced Studies, SOKENDAI, Okazaki 444-8585, Japan.

Published: March 2025

Heterochromatin is a highly condensed chromatin structure observed in the nuclei of eukaryotic cells. It plays a pivotal role in repressing undesired gene expression and establishing functional chromosomal domains, including centromeres and telomeres. Heterochromatin is characterized by specific histone modifications and the formation of higher-order chromatin structures mediated by proteins, such as HP1 and Polycomb repressive complexes (PRCs), which recognize the specific histone modifications. Recent studies have identified the involvement of non-coding RNAs (ncRNAs) and intrinsically disordered proteins (IDPs) in heterochromatin, leading to the proposal of a new model in which liquid-liquid phase separation (LLPS) contributes to heterochromatin formation and function. This emerging model not only broadens our understanding of heterochromatin's molecular mechanisms but also provides insights into its dynamic regulation depending on cellular context. Such advancements pave the way for exploring heterochromatin's role in genome organization and stability, as well as its implications in development and disease.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbagen.2025.130790DOI Listing

Publication Analysis

Top Keywords

intrinsically disordered
8
disordered proteins
8
specific histone
8
histone modifications
8
heterochromatin
5
functional involvement
4
involvement rnas
4
rnas intrinsically
4
proteins assembly
4
assembly heterochromatin
4

Similar Publications

Proteins with chemically regulatable phase separation are of great interest in the fields of biomolecular condensates and synthetic biology. Intrinsically disordered proteins (IDPs) are the dominating building blocks of biomolecular condensates which often lack orthogonality and small-molecule regulation desired to create synthetic biomolecular condensates or membraneless organelles (MLOs). Here, we discover a well-folded globular protein, lipoate-protein ligase A (LplA) from E.

View Article and Find Full Text PDF

Atomistic molecular dynamics simulations of intrinsically disordered proteins.

Curr Opin Struct Biol

March 2025

Department of Chemistry and Department of Physics, University of Illinois Chicago, Chicago, IL, 60607, USA; Department of Physics, University of Illinois Chicago, Chicago, IL, 60607, USA. Electronic address:

Recent years have seen remarkable gains in the accuracy of atomistic molecular dynamics (MD) simulations of intrinsically disordered proteins (IDPs) and expansion in the types of calculated properties that can be directly compared with experimental measurements. These advances occurred due to the use of IDP-tested force fields and the porting of MD simulations to GPUs and other computational technologies. All-atom MD simulations are now explaining the sequence-dependent dynamics of IDPs; elucidating the mechanisms of their binding to other proteins, nucleic acids, and membranes; revealing the modes of drug action on them; and characterizing their phase separation.

View Article and Find Full Text PDF

Amyotrophic Lateral Sclerosis (ALS) is a devastating neurodegenerative disease characterized by the degeneration of upper and lower motoneurons. The four most frequently mutated genes causing familial ALS (fALS) are C9orf72, FUS, SOD1, and TARDBP. Some of the related wild-type proteins comprise intrinsically disordered regions (IDRs) which favor their assembly in liquid droplets-the biophysical mechanism behind the formation of physiological granules such as stress granules (SGs).

View Article and Find Full Text PDF

Nonbonded Parameter Optimization Improving Simulation of Intrinsically Disordered Phosphoproteins.

J Chem Inf Model

March 2025

State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, SJTU-Yale Joint Center for Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240 Shanghai, China.

Phosphorylated proteins play a crucial role in numerous cellular processes, acting as key regulators in signal transduction networks, cell expansion, and various biochemical reactions. Molecular dynamics (MD) simulations are powerful tools for exploring the dynamic conformations of phosphoproteins. However, conventional force fields often underestimate the radii of gyration (Rg) of phosphoproteins.

View Article and Find Full Text PDF

Intrinsically disordered regions (IDRs) of proteins are defined by functionally relevant molecular grammars. This refers to IDR-specific non-random amino acid compositions and non-random patterning of distinct pairs of amino acid types. Here, we introduce GIN (Grammars Inferred using NARDINI+) as a resource, which we have used to extract the molecular grammars of all human IDRs and classified them into thirty distinct clusters.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!