Ivermectin (IVM), a widely used antiparasitic drug in veterinary medicine, has emerged as an environmental contaminant due to its semi-persistence and potentially harmful ecotoxicological impacts on non-target terrestrial fauna. This study investigates the innovative combination of sorption, desorption, and bioaccumulation dynamics of IVM in soil-earthworm systems, focusing on the species Eisenia fetida, Aporrectodea caliginosa, and Lumbricus terrestris. Sorption experiments in artificial soil (AS) and its components (sand, clay, peat) revealed a strong affinity of IVM for organic-rich substrates, reducing bioavailability and bioaccumulation. Bioaccumulation studies showed that the kinetic bioaccumulation factor BAF for IVM in E. fetida ranged from 0.505 to 0.727 g soil dw/g earthworm dw, with elimination kinetics best described by a biphasic model, and suggesting minimal net accumulation. A. caliginosa and L. terrestris showed slightly higher accumulation potential, with accumulation factors exceeding 1 during the uptake phase, although equilibrium was not reached within 21 days. The prolonged accumulation process, combined with a calculated DT of 142 days in AS, underscores IVM's potential environmental persistence and risk, particularly its ecotoxicological relevance. The results also suggest that strong sorption to organic matter in soils can mitigate bioaccumulation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2025.144228 | DOI Listing |
Nanomaterials (Basel)
February 2025
Department of Animal Sciences and Aquatic Ecology, Ghent University, Westenschapspark 1, Bluebridge, 8400 Oostende, Belgium.
Plastics pose a significant threat to marine ecosystems, owing to their slow biodegradability. Microplastics (MPs), in particular, affect marine life and maricultural organisms and can enter the food chain via ingestion by marine organisms, leading to bioaccumulation in predators, including humans. This study assessed the toxic interactions between polystyrene microplastic particles (PSMPs) and cadmium (Cd) and phenanthrene (Phe) using marine bivalves.
View Article and Find Full Text PDFJ Appl Toxicol
March 2025
Department of Zoology, Visva-Bharati, Santiniketan, West Bengal, India.
The extensive industrial use of lead (Pb) and chromium (Cr) has led to their persistent release into aquatic ecosystems, posing severe ecological and toxicological challenges. While the individual toxicities of these metals are well-documented, their combined effects, particularly on toxicity mechanisms and cellular stress responses, remain inadequately understood. This study investigated the hepatotoxic effects of Pb and Cr, both individually and in combination, in zebrafish (Danio rerio), focusing on oxidative stress and the Nrf2-Keap1-ARE signaling pathway.
View Article and Find Full Text PDFAquat Toxicol
March 2025
Department of Earth, Environmental and Life Sciences (DISTAV), University of Genova, Italy, Corso Europa 26, 16132 Genova, Italy; National Biodiversity Future Centre, 90133, Palermo, Italy. Electronic address:
Selective Serotonin Reuptake Inhibitors (SSRIs) are among the most prescribed antidepressants, whose increasing consumption results in a continuous discharge into aquatic compartments, where they are detected at ng-µg/L levels. Whilst designed to modulate endogenous levels of circulating Serotonin (5-HT) in humans by selectively interfering with serotonin reuptake transporters (SERTs), SSRIs have been shown to induce a variety of adverse effects in non-target species, including aquatic invertebrates. In bivalve molluscs, adult exposure to environmental concentrations of SSRIs results in tissue bioaccumulation and induces different biomarker responses.
View Article and Find Full Text PDFEnviron Sci Technol
March 2025
Université Côte d'Azur, CNRS, Institut de Chimie de Nice, 06108 Nice, France.
Since the end of nuclear weapon testing, anthropogenic metallic radionuclides have originated from nuclear accidents such as Chernobyl and Fukushima and controlled releases from the nuclear industry. Co is an activation product found in the effluents of nuclear power plants, mobile nuclear reactors, and fuel reprocessing facilities. In this paper, we are addressing the question of (radio)cobalt speciation upon bioaccumulation in the sentinel organism after contamination in a pseudo-natural system.
View Article and Find Full Text PDFFront Microbiol
February 2025
Ficobiotechnology Laboratory, Institute of Microbiology and Biotechnology, Technical University of Moldova, Chisinau, Moldova.
Introduction: Copper nanoparticles (CuNPs) and copper oxide nanoparticles (CuONPs) are increasingly explored for their biological interactions with various organisms, including cyanobacteria, due to their unique properties and potential applications. This study investigates the effects of CuNPs and CuONPs on the cyanobacterium (Roth) Born et Flah CNMN-CB-03, focusing on biomass accumulation, biochemical content, pigment composition, and microscopic structural changes.
Methods: cultures were exposed to CuNPs and CuONPs at concentrations ranging from 0.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!