Owing to the complexity of municipal solid waste (MSW), flue gas composition and operating conditions, it is challenging to predict pollutant emissions accurately and control them intelligently in the MSW incineration process. This study uses a 750 t/d large-scale grate-type MSW incinerator as the research object. Based on a long short-term memory (LSTM) model, collaborative prediction (co-prediction) of multiple pollutants (HCl, SO, NO, and PM) emissions from MSW incinerator flue gas was achieved. By coupling the prediction model with the particle swarm optimization (PSO) algorithm, an intelligent control program for pollutants developed with NO as an example can correlate NO emission with ammonia spray control. The results showed that, compared with conventional data input methods, time-series input resulted in better co-prediction performance. The mean absolute error (MAE) and mean squared error (MSE) results of the LSTM model on the testing set were reduced by 10.98% and 13.95%, respectively. The Change of MSE (COM) feature importance analysis method indicated that features such as the first flue temperature, the second flue temperature, and the primary air airflow had high importance in influencing the co-prediction of pollutants. The intelligent control program developed for NO emission was tested under continuous operation for 120 h, and compared with that achieved before optimization control, the amount of ammonia sprayed on the incinerator was reduced by 9.84% after optimization, reducing the environmental risk and offering significant economic benefits. This study provides scientific theoretical guidance for the efficient, economical and low-emission intelligent prediction and control of MSW incinerators.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2025.124874DOI Listing

Publication Analysis

Top Keywords

intelligent control
12
collaborative prediction
8
multiple pollutants
8
flue gas
8
msw incinerator
8
lstm model
8
control program
8
flue temperature
8
control
7
msw
5

Similar Publications

Distance-Readout Paper-Based Microfluidic Chip with a DNA Hydrogel Valve for AFB1 Detection.

Anal Chem

March 2025

Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Robot Intelligent Laboratory of Traditional Chinese Medicine, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, P. R. China.

Accurate and rapid aflatoxin B1 (AFB1) detection is essential for ensuring the safety of food supplies. In this paper, we introduce a distance-readout paper-based microfluidic chip (DPMC) that offers a sensitive and reliable method for the detection of AFB1. The DPMC comprises a DNA hydrogel sensitive valve and a paper-based capillary channel.

View Article and Find Full Text PDF

We demonstrate a thermally controlled ultra-wideband wide incident angle metamaterial absorber with switchable transmission at the THz band in this paper. The underlying hybrid structure of FSS-VO thin films make them switchable between absorption mode and transmission mode by controlling the temperature. It can achieve ultra-wideband absorption with above 90% absorption from 1 THz to 10 THz and exhibits excellent absorption performance under a wide range of incident and polarization angles at a high temperature (80 °C).

View Article and Find Full Text PDF

Progress in the Development of Flexible Devices Utilizing Protein Nanomaterials.

Nanomaterials (Basel)

February 2025

Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.

Flexible devices are soft, lightweight, and portable, making them suitable for large-area applications. These features significantly expand the scope of electronic devices and demonstrate their unique value in various fields, including smart wearable devices, medical and health monitoring, human-computer interaction, and brain-computer interfaces. Protein materials, due to their unique molecular structure, biological properties, sustainability, self-assembly ability, and good biocompatibility, can be applied in electronic devices to significantly enhance the sensitivity, stability, mechanical strength, energy density, and conductivity of the devices.

View Article and Find Full Text PDF

In Situ Thermal Decomposition of Potassium Borohydride for Borophene Synthesis and Its Application in a High-Performance Non-Volatile Memory Device.

Nanomaterials (Basel)

February 2025

State Key Laboratory of Mechanics and Control for Aerospace Structures, Laboratory of Intelligent Nano Materials and Devices of Ministry of Education, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.

Borophene, a revolutionary two-dimensional (2D) material with exceptional electrical, physical, and chemical properties, holds great promise for high-performance, highly integrated information storage systems. However, its metallic nature and structural instability have significantly limited its practical applications. To address these challenges, hydrogenated borophene has emerged as an ideal alternative, offering enhanced stability and semiconducting properties.

View Article and Find Full Text PDF

N-of-1 trials are currently receiving broader attention in healthcare research when assessing the effectiveness of interventions. In contrast to the most commonly applied two-arm randomized controlled trial (RCT), in an N-of-1 design, the individual acts as their own control condition in the sense of a multiple crossover trial. N-of-1 trials can lead to a higher quality of patient by examining the effectiveness of an intervention at an individual level.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!