A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Cross-sectional-dependent microbial assembly and network stability: Bacteria sensitivity response was higher than eukaryotes and fungi in the Danjiangkou Reservoir. | LitMetric

Cross-sectional-dependent microbial assembly and network stability: Bacteria sensitivity response was higher than eukaryotes and fungi in the Danjiangkou Reservoir.

J Environ Manage

International Joint Laboratory of Watershed Ecological Security for Water Source Region of Middle Route Project of South-North Water Diversion in Henan Province, College of South to North Water Diversion / College of Water Resource and Modern Agriculture, Nanyang Normal University, Nanyang, 473061, China; Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA. Electronic address:

Published: March 2025

Water depth variation can lead to the vertical structure change of microbial communities in reservoirs, and then affect the relationship between the microbial communities along the depth gradient, profoundly affecting the stability of the aquatic ecosystems. However, the interspecific dynamics of microbial communities across different water layers in deep-water low-nutrient drinking water reservoirs remain not well understood. Thus, we assessed microbial communities' dynamic changes in different water layers in this study. The physical and chemical parameters and different planktonic microbial of the surface, middle, and bottom layers were studied from July 2022 to August 2023 in the Danjiangkou Reservoir, China. Based on high-throughput sequencing technology, model analysis and network analysis, the diversity of microbial communities in different water layers, community construction process and co-occurrence network differences were studied. The results showed that the diversity of bacterial communities in the Danjiangkou reservoir was significantly higher than that of fungi and eukaryotic microorganisms in different water depths. The dominant taxa of the bacterial communities in different water depths were Actinobacteriota, Bacteroidota, Proteobacteria and Cyanobacteria. The dominant phyla were Ascomycota, unclassified_k__Fungi and Chytridiomycota. The relative abundance of vertical dominant species in eukaryotic communities was slightly different, including Cryptophyta, Chlorophyta, Dinophyta and Metazoa. Different microbial communities shared the main dominant species on the vertical stratification. The neutral model showed that random processes significantly affected the assembly process of microbial communities in different water layers, and the mobility of fungal communities was much lower than that of bacteria and eukaryotes. The co-occurrence network analysis showed that the number of nodes and edges of the bacterial community was the highest, indicating that the network scale of the bacterial community was the largest. In addition, the map density and average clustering coefficient of bacterial and eukaryotic communities in surface water were the highest, indicating that the surface microbial species had a high degree of connectivity, can better transfer materials and exchange information, and Sensitive to changes in the external environment. In contrast, in fungal communities, microbial interactions were the most complex at the bottom. The interactions between microbial communities in different water depths were mainly positive, and the negative correlation of microbial communities in the middle and bottom water was greater than that in the surface water, indicating that the competition between species increased with the increase of depth. Correlation analysis showed that the key species of microbial community were significantly correlated with TP, PO-P, NO-N and ORP. In summary, by analyzing water depth changes' impacts on the spatial distribution pattern, community assembly process and symbiotic network stability of microbial communities in the Danjiangkou Reservoir, we found that bacterial communities were more sensitive to water depth than eukaryotes and fungi. This study revealed the response mechanism of microbial communities to water depth in low-nutrient reservoirs, which is helpful to reflect aquatic ecological processes and provide a theoretical basis for the construction of subsequent reservoir ecological models.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2025.124851DOI Listing

Publication Analysis

Top Keywords

microbial communities
40
communities water
24
communities
17
danjiangkou reservoir
16
water depth
16
water layers
16
water
15
microbial
15
bacterial communities
12
water depths
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!