Phages have garnered increasing attention due to their potential roles in biogeochemical cycling. However, their impacts on nitrogen cycling have primarily been inferred from the presence of putative auxiliary metabolic genes (AMGs) and the virus-host linkage, despite of very limited direct experimental evidence. In this study, a series of microcosms were established with the inoculation of either native or non-native phages to simulate coastal wetlands with different phage sources and different levels of copper (Cu) contamination. Metagenomics and metatranscriptomics were combined to reveal phages' regulation on microbially-driven nitrogen cycling and to explore how the effects were mediated by Cu stress. Phages significantly impacted denitrification-related genes, with their effects depending on Cu level. Phages inhibited nirK-type denitrification under Cu stress but led to up-regulation of nirS gene in the treatments without Cu addition. Non-native phages also promoted the transcription of genes related to nitrogen assimilation and organic nitrogen transformation. Detection of viral AMGs involved in glutamate synthesis suggested that horizontal gene transfer may be a crucial pathway for phages to facilitate microbial nitrogen uptake. Overall, these findings enhance the understanding of phages' impact on biogeochemical metabolism in coastal wetland, offering novel insights into the links of phages' regulation on microbial nitrogen cycling with Cu stress.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2025.137870 | DOI Listing |
Proc Natl Acad Sci U S A
March 2025
Commissariat à l'énergie atomique et aux énergies alternatives, CNRS, Institute for Integrative Biology of the Cell, Université Paris-Saclay, Gif-sur-Yvette 91198, France.
is a soil bacterium that establishes a nitrogen-fixing symbiosis within root nodules of legumes. In this symbiosis, undergoes a drastic cellular change leading to a terminally differentiated form, called bacteroid, characterized by genome endoreduplication, increased cell size, and high membrane permeability. Bacterial cell cycle (mis)regulation is at the heart of this differentiation process.
View Article and Find Full Text PDFCurr Microbiol
March 2025
Key Laboratory of Plant Biotechnology of Liaoning Province, School of Life Sciences, Liaoning Normal University, Dalian, 116081, China.
Naphthenic acids (NAs) are indigenous and complex components in petroleum. In the context of increasing global energy demand, the increasing extraction of fossil resources leads to increased environmental release of NAs, resulting in various environmental risks. However, the impact of NAs exposure on soil microorganisms remains still unclear.
View Article and Find Full Text PDFMicrob Ecol
March 2025
Instituto de Geología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Av. Universidad 3000, Del. Coyoacán, 04510, Ciudad de Mexico, México.
Bacteria and Archaea are microorganisms that play key roles in the biogeochemical transformations that control water quality in freshwater ecosystems, such as in reservoirs. In this study, we characterize the prokaryotic community of a high-relevance tropical eutrophic reservoir using a 16S rRNA gene survey during a low-water level fluctuation period mainly used for storage, associating the distribution of these microorganisms with the hydrogeochemical conditions of the water column. Our findings revealed that diversity and structure of the prokaryotic community exhibited spatio-temporal variations driven by the annual circulation-stratification hydrodynamic cycle and are significantly correlated with the concentrations of dissolved oxygen (DO), soluble reactive phosphorus (SRP), and dissolved inorganic nitrogen (DIN).
View Article and Find Full Text PDFACS Appl Mater Interfaces
March 2025
Northwest Institute for Nonferrous Metal Research, Xi'an, Shannxi 710016, China.
Porous KTi(PO) nanoparticles are synthesized via a solvothermal method and subsequently modified with nitrogen-doped carbon layers by using polydopamine as the carbon source. The resultant KTi(PO)@N-doped carbon composite (KTP@NC) exhibits a preserved porous structure with abundant pores, facilitating ion diffusion and electrolyte infiltration. Various characterizations, including X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy, reveal the successful formation of an interconnected nitrogen-doped carbon network.
View Article and Find Full Text PDFNanomaterials (Basel)
February 2025
Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary.
Sn-doped TiO-carbon composites were identified as promising multifunctional supports for Pt electrocatalysts, in which the oxide component enhances resistance against corrosion and strong metal-support interactions at the Pt-oxide boundary ensure high stability for the Pt nanoparticles. This work is devoted to the study of the influence of preliminary functionalization of the carbon on the properties of Pt/TiSnO-C catalysts. The structural, compositional and morphological differences between the samples prepared using functionalized or unmodified carbon, as well as the effect of carbon pre-modification on the electrocatalytic behavior of the synthesized Pt catalysts, were investigated using TEM, XRD, XPS, nitrogen adsorption and electrochemical measurements.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!