Submarine Groundwater Discharge (SGD) constitutes a pivotal mechanism for the transference of freshwater, nutrients, and pollutants from terrestrial to marine environments, exerting a profound influence on coastal water quality and ecosystem dynamics. In this investigation, we executed an extensive field sampling campaign along the 650 km coastal expanse of southwest India, employing a 10-km sampling interval, to discern and validate the probable zones of SGD. We have utilized a transect-based methodology for the systematic collection of groundwater, porewater, and seawater samples, employing a suite of proxies to scrutinize SGD). This multifaceted approach encompassed biogeochemical, geophysical, and remote sensing techniques. The in situ physio-chemical parameters, encompassing electrical conductivity (EC), total dissolved solids (TDS), pH, dissolved oxygen (DO), temperature, and salinity, facilitated the delineation of prospective SGD sites. Adjacent continuous probable SGD sites were amalgamated into nine potential SGD zones spanning the 650 km coastal stretch. Comprehensive analyses of major ions and nutrients revealed maximum observed seawater concentrations of nitrate, phosphate, and silica at 22.11 µM/L, 12.5 µM/L, and 11.69 µM/L, respectively, underscoring the SGD signatures and the subsequent transference of nutrients from terrestrial sources to the ocean via subsurface pathways. Furthermore, geophysical investigations employing Electrical Resistivity Tomography (ERT) at the nine potential SGD zones substantiated the groundwater signatures, elucidating subsurface lithology, delineating the aquifer system, and determining the extent of the saline-freshwater interface, including discharge depth. All ERT profiles were meticulously calibrated against available lithological data. Additionally, we executed a comprehensive evaluation of Landsat-8 satellite imagery within the thermal infrared spectral domain (10.6-11.19 μm) to monitor variations in sea surface temperature (SST) and sea surface anomalies across three stratified thermal ranges (21-28 °C, 25-33 °C, and 11-23 °C) encompassing the entire study area. The visual correlation observed between lower SST values and the identified SGD probable zones further substantiates supplementary validation. Ultimately, the verification of these nine prospective SGD zones was reinforced through a meticulous comparison with groundwater level data, which ranged from 0 to 41 m above mean sea level (MSL). This extensive investigation represents the inaugural comprehensive identification and confirmation of SGD zones along the southwest coast of India, spanning a 650-km stretch, resulting in a more precise demarcation of the area into nine SGD probable zones where multiple proxies are mutually corroborative.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-025-36132-wDOI Listing

Publication Analysis

Top Keywords

sgd zones
16
sgd
12
probable zones
12
multiple proxies
8
submarine groundwater
8
groundwater discharge
8
southwest coast
8
coast india
8
biogeochemical geophysical
8
geophysical remote
8

Similar Publications

Submarine Groundwater Discharge (SGD) constitutes a pivotal mechanism for the transference of freshwater, nutrients, and pollutants from terrestrial to marine environments, exerting a profound influence on coastal water quality and ecosystem dynamics. In this investigation, we executed an extensive field sampling campaign along the 650 km coastal expanse of southwest India, employing a 10-km sampling interval, to discern and validate the probable zones of SGD. We have utilized a transect-based methodology for the systematic collection of groundwater, porewater, and seawater samples, employing a suite of proxies to scrutinize SGD).

View Article and Find Full Text PDF

Submarine groundwater discharge (SGD) plays a pivotal role in coastal biogeochemistry, yet it is still challenging to accurately quantify water and solute fluxes driven by this process due to its complex hydrogeological dynamic. This work aims to improve the methods to identify and independently quantify different pathways of SGD by combining direct measurements through seepage meters and Amphibious Electrical Resistivity Tomography (AERT) at a heterogeneous karstic system in the Mediterranean Sea. The integrated approach identified and quantified distinct SGD pathways, including beach-face recirculation, focused discharge zones, submarine springs, and diffusive discharge, each uniquely influencing SGD dynamics.

View Article and Find Full Text PDF

Investigations of the spatial-temporal variations of nutrients within mangrove coastal zones are essential for assessing the environmental status of an aquatic ecosystems. However, major processes controlling nitrate cycle along the submarine groundwater discharge (SGD) pathway from the mangrove areas to adjacent tidal creek remain underexplored. A time series measurement over a 25 h tidal cycle was conducted in Qinglan Bay tidal creek (Hainan Island, China).

View Article and Find Full Text PDF

Freeway tunnel approach zones, situated outside the tunnel, do not undergo the same sudden changes in luminous environment and visual references that entrance zones experience. Despite this, accident data indicates that approach zones present similar safety risks to entrance zones, both of which are significantly higher than other tunnel sections. The reasons for the heightened risks in approach zones remain unclear in existing research.

View Article and Find Full Text PDF
Article Synopsis
  • Groundwater quality is critical for health and agriculture but is often overlooked, leading to contamination, particularly in Kerala, India, where 62% of the population depends on it from millions of open wells.
  • This study uses machine learning techniques like random forest and others to analyze groundwater quality across Kerala, recognizing varying quality levels and validating them with spatial diagrams.
  • The findings reveal that 7.4% of the state has poor-quality groundwater, endangering around 0.59 million people, highlighting the need for sustainable groundwater management and addressing public health risks.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!