The liquid metal embrittlement (LME) induced by Zn melts in advanced high strength steels has seriously hindered their wide application in various industries. Microscopically, wetting is the precursor for LME; it is therefore crucial to understand the wetting of Zn melts on Fe surfaces. Molecular dynamics simulations were conducted to investigate the wetting behavior of Zn droplets on Fe(001), Fe(110), and Fe(111) surfaces from both thermodynamics and dynamics aspects. The simulation results reveal that the surface energy of solid Fe is significantly greater than the surface tension of liquid Zn and the interfacial energy of Fe-Zn solid-liquid interface at the pertinent temperatures. Consequently, Zn droplets tend to completely envelop the Fe substrates as they spread toward the equilibrium state. Specifically, Fe(111) surfaces possess the highest surface energy, whereas Fe(110) surfaces have the lowest surface energy. Meanwhile, the solid-liquid interfacial energy is minimal for Fe(111)/Zn and maximal for Fe(110)/Zn. These differences contribute to the strongest spreading driving force for Zn droplets on Fe(111) surfaces and the weakest on Fe(110). During the initial spreading stage, Zn droplets form precursor films on all Fe surfaces. Nonetheless, on Fe(111), the dissolution reaction between the substrates and the droplets destabilizes the precursor films, ultimately resulting in complete wetting. Conversely, no dissolution is observed between Zn droplets and the Fe(001) or Fe(110) surface. As a result, the equilibrium Zn droplet consists of a prefreezing precursor film that grows epitaxially on the substrate and a main body of the droplet exhibiting a convex hull shape corresponding to pseudopartial wetting. These findings provide new insights into the wetting behavior of metal droplets on metal surfaces, particularly for understanding the liquid metal embrittlement induced by Zn melts in steels.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.4c05308 | DOI Listing |
AAPS PharmSciTech
March 2025
Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India.
Colorectal cancer is the second most common cause of death due to growing incidence. Andrographolide (AGD) induces apoptosis in colorectal cancer cells; however, oral administration of AGD is associated with hindered aqueous solubility (3.29 ± 0.
View Article and Find Full Text PDFJ Environ Manage
March 2025
College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, China; State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao, 266590, China. Electronic address:
Water-injected fracturing fluids can wet the coal body and reduce the amount of dust produced during coal mining. In order to enhance the wetting performance of fracturing fluids, a Gemini cationic surfactant named Gemini-TOH was innovatively synthesized in this paper using a three-step process. On this basis, a Gemini-TOH/KCl composite fracturing fluid system was developed by adding KCl.
View Article and Find Full Text PDFLangmuir
March 2025
Institut de Science des Matériaux de Mulhouse (IS2M) CNRS, Université de Haute-Alsace, Université de Strasbourg, 15, Rue JCan Starcky─B.P. 2488, 68057 Mulhouse Cedex, France.
Contact angles of silicone oil droplets and air bubbles settled on a solid substrate and confined in binary ethylene glycol/water mixtures were studied as a function of ethylene glycol concentration. Despite similar reductions in interfacial tensions for both systems, distinct wetting behaviors were observed. While the air bubble contact angle increased with ethylene glycol concentration, the silicone oil droplet exhibited a more complex response, characterized by a stable contact angle at low ethylene glycol concentrations followed by an increase at higher concentrations.
View Article and Find Full Text PDFJ Environ Manage
March 2025
Department of Agronomy, Kansas State University, Manhattan, KS, USA.
Forest fires have significantly increased over the last decade due to shifts in rainfall patterns, warmer summers, and long spells of dry weather events in the coastal regions. Assessment of susceptibility to forest fires has become an important management tool for damage control before the occurrence of fires, which often spread very rapidly. In this context, the current study was undertaken with the aim to map forest areas susceptible to fire in the state of Goa (India) using remote sensing (RS) and geographic information system () derived variables through an analytical hierarchy process (AHP) and machine learning techniques namely random forest (RF), support vector machine (SVM), extreme gradient boosting (XGB).
View Article and Find Full Text PDFLangmuir
March 2025
Multiscale Multiphysics Thermo-Fluids Lab, Department of Mechanical Engineering, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani333031, Rajasthan, India.
Environmental fog accumulation is a sustainable source of clean water, particularly in humid and arid regions. Many organisms have evolved passive microstructures to aid in fog droplet nucleation, accumulation, and transport. Researchers have developed various fog collectors, utilizing strategies like wire mesh, conical geometries, micronano texturing, and wettability modifications to enhance water collection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!