Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Traditional per- and polyfluoroalkyl substances (PFASs) have been observed in the remote Southern Ocean. In contrast, current knowledge about emerging PFASs, such as perfluoroether carboxylic acids (PFECAs), and their transport mechanisms remains ambiguous. In this study, the occurrence and transport of both traditional and emerging PFASs in the surface seawater of the Southeast Indian Ocean and Antarctic marginal seas are comprehensively discussed by integrating hydrological data. Long-chain PFASs were restricted to the north of the thermohaline front in the Southeast Indian Ocean, suggesting a transport barrier effect and the input of terrestrial contamination from low-latitude regions. Conversely, unexpectedly high levels of short-chain perfluorobutanoic acid (PFBA) were limited to the south of the Antarctic Circumpolar Current, preventing further northward transport. PFBA showed significant positive correlations with two emerging PFECAs, perfluoro-2-methoxyacetic acid (PFMOAA) and fluoro(heptafluoropropoxy)acetic acid (3:2 H-PFECA), which were also widely detected in Antarctic marginal seas for the first time. This suggests their similar sources and environmental behavior, as they were probably formerly accumulated in Antarctic snow through atmospheric deposition and released into seawater during the summertime melting process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.est.4c13574 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!