Overcoming tumor antioxidant defenses remains a critical challenge for reactive-oxygen-species-mediated tumor therapies. To address this problem, herein, a theranostic nanomedicine designated as CCM@MIB has been elaborately constructed. Homologous cancer cell membrane (CCM) camouflage significantly enhances the selective accumulation of the nanomedicine at tumor sites. In response to the tumor microenvironment (TME), CCM@MIB controllably releases Mn ions and sulfur dioxide (SO) molecules. The released Mn ions catalyze the self-oxidation of isoniazid to generate highly toxic •OH, while the SO produced by benzothiazole sulfinate effectively disrupts tumor antioxidant defense systems. The catalase-like activity endowed by Mn ions and the increased intracellular •O level induced by SO further promote •OH production. Therefore, such an intellectual combination of non-Fenton-type catalytic therapy and SO gas therapy significantly amplifies oxidative stress and efficiently suppresses tumor growth. Additionally, the TME-activated magnetic resonance imaging contrast performance of CCM@MIB is beneficial for guiding antitumor treatment. This considerate strategy designed in our work provides an ingenious paradigm for the development of efficient antitumor therapies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.5c01310 | DOI Listing |
Background: This study aimed to investigate the effects of total antioxidant capacity (T-AOC), superoxide dismu-tase (SOD), and malondialdehyde (MDA) in blood on the postoperative wound healing process of patients with severe burns treated by Meek micrografting.
Methods: In total, 154 patients with severe burns who underwent Meek micrografting treatment were selected as the observation group, and 80 healthy people were taken as the control group. General clinical data were collected, and serum T-AOC, SOD, and MDA were analyzed by biochemical analysis.
J Asthma
March 2025
Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
Front Immunol
March 2025
Department of Endodontics, Southern Medical University Stomatological Hospital, Guangzhou, China.
Periodontitis is a significant global public health issue associated with the onset and progression of various systemic diseases, thereby requiring additional research and clinical attention. Although ferroptosis and cuproptosis have emerged as significant areas of research in the medical field, their precise roles in the pathogenesis of periodontitis remain unclear. We aim to systematically summarize the current research on ferroptosis and cuproptosis in periodontal disease and investigate the roles of glutathione pathway and autophagy pathway in connecting ferroptosis and cuproptosis during periodontitis.
View Article and Find Full Text PDFFront Pharmacol
February 2025
School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, Jiangxi, China.
Atherosclerosis (AS)-related cardiovascular disease and depression are often comorbid, with patients with cardiovascular disease facing an increased risk of depression, which worsens AS. Both diseases are characterized by oxidative stress and lipid metabolism disorders. Ferroptosis, a form of cell death characterized by iron overload and harmful lipid peroxide accumulation, is found in various diseases, including AS and depression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!