Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Micro/nano-scale robotic devices are emerging as a cutting-edge approach for precision intravascular therapies, offering the potential for highly targeted drug delivery. While employing micro/nanorobotics for stroke treatment is a promising strategy due to its ability to localize therapy and minimize drug dosage, current methods require prolonged treatment durations, increasing the risk of nerve tissue necrosis from extended hypoxia. Here a programmable colloidal microswarm capable of rapidly detaching blood clots from the vessel wall is developed, enabling swift recanalization without the need for complete clot degradation. More importantly, the detached clot debris, despite their random shapes, functions as magnetic "debris-robots" and can be efficiently propelled through helical swimming within flowing vessels, followed by retrieval using catheter suction. The entire process-including catheter delivery, controlled locomotion, clot detachment, and retrieval-can be completed in approximately half an hour, significantly saving time compared to the critical "Golden 6 hours" window for stroke treatment. This retrieval procedure greatly minimizes nanoparticle exposure in the bloodstream and lowers the risk of secondary clotting in distal vessels, marking a significant advancement in robotic-assisted thrombolysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/advs.202415305 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!