Whole-brain proton magnetic resonance spectroscopic imaging (H-MRSI) is a non-invasive technique for assessing neurochemical distribution in the brain, offering valuable insights into brain functions and neural diseases. It greatly benefits from the improved SNR at ultrahigh field strengths (≥ 7T). However, H-MRSI still faces several challenges, such as long acquisition time and severe signal contamination from water and lipids. In this study, 2D and 3D short TR/TE H-FID-MRSI sequences using rosette trajectories were developed with nominal spatial resolutions of 4.48 × 4.48 mm and 4.48 × 4.48 × 4.50 mm, respectively. Water signals were suppressed using an optimized Five-variable-Angle-gaussian-pulses-with-ShorT-total-duration (FAST) water suppression scheme of 76 ms, and lipid signals were removed using the L regularization method. Metabolic maps of major H metabolites were obtained in 5:40 min with 16 averages and 1 average for the 2D and 3D acquisitions, respectively. Excellent intra-session reproducibility was shown, with the coefficients of variance (CV) being lower than 6% for N-Acetyl-L-aspartic acid (NAA), Glutamate (Glu), total Choline (tCho), Creatine and Phosphocreatine (tCr), and Glycine and Myo-inositol (Gly + Ins). To explore the potential of further acceleration, compressed sensing was applied retrospectively to the 3D datasets. The structural similarity index (SSIM) remained above 0.85 and 0.8 until R = 2 and 3 for the metabolite maps of Glu, NAA, tCr, and tCho, indicating the possibility for further reduction of acquisition time to around 2 min.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11889463PMC
http://dx.doi.org/10.1002/hbm.70176DOI Listing

Publication Analysis

Top Keywords

spectroscopic imaging
8
acquisition time
8
rosette spectroscopic
4
imaging whole-brain
4
whole-brain slab
4
slab metabolite
4
metabolite mapping
4
mapping acceleration
4
acceleration potential
4
potential reproducibility
4

Similar Publications

Spectroscopic Manifestation of a Weak van der Waals Interaction Between -Stilbene and Hexagonal Boron Nitride Surface.

Langmuir

March 2025

Department of Information and Electrical Engineering and Applied Mathematics, University of Salerno, via Giovanni Paolo II 132, Fisciano, Salerno 84084, Italy.

The interaction between organic molecules and nanomaterials leads to complexation or the functionalization of later and modification of their properties, which are promising for electronics, terahertz technology, photonics, medical imaging, drug delivery, and other applications. Based on theoretical and experimental (THz, Raman, and fluorescence spectroscopy) studies, we analyzed the main spectroscopic characteristics of a weakly bound van der Waals complex of -stilbene (TS) molecule and hexagonal boron nitride (hBN). Raman scattering was demonstrated to be the most effective tool to confirm complex formation, exhibiting blue-shifted TS fingerprint lines in the TS + hBN Raman spectrum with respect to the spectra of pure TS or BN.

View Article and Find Full Text PDF

Since the end of nuclear weapon testing, anthropogenic metallic radionuclides have originated from nuclear accidents such as Chernobyl and Fukushima and controlled releases from the nuclear industry. Co is an activation product found in the effluents of nuclear power plants, mobile nuclear reactors, and fuel reprocessing facilities. In this paper, we are addressing the question of (radio)cobalt speciation upon bioaccumulation in the sentinel organism after contamination in a pseudo-natural system.

View Article and Find Full Text PDF

is a member of the Rutaceae family and a source of diverse biological properties. Most studies have focused on the extract from the dried fruit pulp, but the fresh pulp remains unexplored. This study reports the crystal isolation of imperatorin from fresh fruit pulp using ethyl acetate extract which was confirmed by spectroscopic techniques.

View Article and Find Full Text PDF

Glutamate is an important excitatory neurotransmitter, while GABA is an inhibitory neurotransmitter. However, direct and accurate visualization of these important signaling agents by a chemical sensor is still very challenging. Here, a novel coumarin-based fluorescent sensor for the selective labeling and imaging of amino acids in neurons has been developed.

View Article and Find Full Text PDF

Purpose: To achieve high-resolution, three-dimensional (3D) quantitative diffusion-weighted MR spectroscopic imaging (DW-MRSI) for molecule-specific microstructural imaging of the brain.

Methods: We introduced and integrated several innovative acquisition and processing strategies for DW-MRSI: (a) a new double-spin-echo sequence combining selective excitation, bipolar diffusion encoding, rapid spatiospectral sampling, interleaved water spectroscopic imaging data, and a special sparsely sampled echo-volume-imaging (EVI)-based navigator, (b) a rank-constrained time-resolved reconstruction from the EVI data to capture spatially varying phases, (c) a model-based phase correction for DW-MRSI data, and (d) a multi-b-value subspace-based method for water/lipids removal and spatiospectral reconstruction using learned metabolite subspaces, and e) a hybrid subspace and parametric model-based parameter estimation strategy. Phantom and in vivo experiments were performed to validate the proposed method and demonstrate its ability to map metabolite-specific diffusion parameters in 3D.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!