Objective: Temporal lobe epilepsy (TLE) has been recognized as a network disorder with widespread gray matter atrophy. However, the role of connectome architecture in shaping morphological alterations and identifying atrophy epicenters remains unclear. Furthermore, individualized modeling of atrophy epicenters and their potential clinical applications have not been well established. This study aims to explore how gray matter atrophy correlates with normal connectome architecture, identify potential atrophy epicenters, and employ individualized modeling approach to evaluate the impact of different epicenter patterns on surgical outcomes in patients with TLE.
Methods: This study utilized anatomic MRI data from 126 refractory TLE patients who underwent anterior temporal lobectomy and 60 healthy controls (HCs), along with normative functional and structural connectome data, to investigate the relationship between gray matter volume (GMV) changes and functional or structural connectivity. Two models were employed to identify atrophy epicenters: a data-driven approach evaluating nodal and neighbor atrophy rankings, and a network diffusion model (NDM) simulating the spread of pathology from different seed regions. K-means clustering was applied in patient-tailored modeling to uncover distinct epicenter subtypes.
Results: Our findings indicate that the pattern of gray matter atrophy in TLE is constrained primarily by structural connectivity rather than by functional connectivity. Using the structural connectome, we pinpointed the hippocampus and adjacent temporo-limbic regions as key atrophy epicenters. The patient-tailored modeling revealed significant variability in epicenter distribution, allowing us to categorize them into two distinct subtypes. Notably, patients in subtype 2, with epicenters localized to the ipsilateral temporal pole and medial temporal lobe, exhibited significantly higher seizure-free rates compared to patients in subtype 1, whose epicenters situated in frontocentral regions.
Significance: These findings highlight the central role of structural connectivity in shaping TLE-related morphological changes. Individualized epicenter modeling may enhance surgical decisions and improve prognostic stratification in TLE management.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/epi.18343 | DOI Listing |
Psychiatry Res Neuroimaging
March 2025
PROMENTA Research Center, Department of Psychology, Pob 1094, Blindern, N-0317 Oslo, Forskningveien 3A, University of Oslo, Norway; Division of Mental Health and Substance Abuse, Diakonhjemmet Hospital, Oslo, Norway.
Research has reported group-level differences in cortical grey/white matter contrast (GWC) in individuals with psychotic disorders. However, no studies to date have explored GWC in individuals at elevated risk for psychosis. In this study, we examined brain microstructure differences between young adults with psychotic-like experiences or a high genetic risk for psychosis and unaffected individuals.
View Article and Find Full Text PDFElife
March 2025
Department of Complex Systems, Institute of Computer Science of the Czech Academy of Sciences, Prague, Czech Republic.
Longitudinal neuroimaging studies offer valuable insight into brain development, ageing, and disease progression over time. However, prevailing analytical approaches rooted in our understanding of population variation are primarily tailored for cross-sectional studies. To fully leverage the potential of longitudinal neuroimaging, we need methodologies that account for the complex interplay between population variation and individual dynamics.
View Article and Find Full Text PDFAddict Biol
March 2025
Departament de Psicologia Bàsica, Clínica i Psicobiologia, Universitat Jaume I, Castellón, Spain.
Repetitive drug use results in enduring structural and functional changes in the brain. Addiction research has consistently revealed significant modifications in key brain networks related to reward, habit, salience, executive function, memory and self-regulation. Techniques like Voxel-based Morphometry have highlighted large-scale structural differences in grey matter across distinct groups.
View Article and Find Full Text PDFJ Neurochem
March 2025
Koç University Research Center for Translational Medicine (KUTTAM), Koç University, İstanbul, Türkiye.
Central nervous system (CNS) pericytes play crucial roles in vascular development and blood-brain barrier maturation during prenatal development, as well as in regulating cerebral blood flow in adults. They have also been implicated in the pathogenesis of numerous neurological disorders. However, the behavior of pericytes in the adult brain after injury remains poorly understood, partly due to limitations in existing pericyte ablation models.
View Article and Find Full Text PDFMagn Reson Med
March 2025
Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois, USA.
Purpose: To achieve high-resolution, three-dimensional (3D) quantitative diffusion-weighted MR spectroscopic imaging (DW-MRSI) for molecule-specific microstructural imaging of the brain.
Methods: We introduced and integrated several innovative acquisition and processing strategies for DW-MRSI: (a) a new double-spin-echo sequence combining selective excitation, bipolar diffusion encoding, rapid spatiospectral sampling, interleaved water spectroscopic imaging data, and a special sparsely sampled echo-volume-imaging (EVI)-based navigator, (b) a rank-constrained time-resolved reconstruction from the EVI data to capture spatially varying phases, (c) a model-based phase correction for DW-MRSI data, and (d) a multi-b-value subspace-based method for water/lipids removal and spatiospectral reconstruction using learned metabolite subspaces, and e) a hybrid subspace and parametric model-based parameter estimation strategy. Phantom and in vivo experiments were performed to validate the proposed method and demonstrate its ability to map metabolite-specific diffusion parameters in 3D.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!