Cilia are specialized structures found on a variety of mammalian cells, with variable roles in the transduction of mechanical and biological signals (by primary cilia, PC), as well as in the generation of fluid flow (by motile cilia). Their critical role in the establishment of a left-right axis in early development is well described, as well as in the defense immune function of multiciliated upper airway epithelium. By contrast, detailed analysis of the ciliary status of specific cell types during organogenesis and postnatal development has received less attention. In this study, we investigate the progression of ciliary status within the endothelium and mesenchyme of the lung. Remarkably, we find that pulmonary endothelial cells (ECs) lack PC at all stages of development, except in low numbers in the proximal portions of older pulmonary arteries. Mesenchymal cells, by contrast, widely exhibit PC in early development, and a large subset of PDGFRα+ fibroblasts maintain PC into adulthood. The dynamic and differential ciliation of multiple cellular populations in the developing lung both challenges prior assertions that PC are found on all cells and highlights a need to understand their spatiotemporal functions.

Download full-text PDF

Source
http://dx.doi.org/10.1002/dvdy.70008DOI Listing

Publication Analysis

Top Keywords

primary cilia
8
mesenchymal cells
8
ciliary status
8
cells
5
dynamics primary
4
cilia
4
cilia endothelial
4
endothelial mesenchymal
4
cells mouse
4
mouse lung
4

Similar Publications

Inspired by the "Salvinia effect", a novel method for fabricating a magneto-responsive superhydrophobic surface coated with a cluster-distributed cilia array (CC-MRSS) was reported. This surface features a magnetically self-assembled nonuniform microcilia array and demonstrates exceptional microdroplet hydrophobicity, magnetic-responsive wettability, and corrosion resistance. The fabrication process involved mixing polydimethylsiloxane (PDMS) and carbonyl iron powders (CIPs), followed by dividing the mixture into two parts.

View Article and Find Full Text PDF

In vertebrate Hedgehog (Hh) signaling, the precise output of the final effectors, GLI (glioma-associated oncogene) transcription factors, depends on the primary cilium. Upon pathway initiation, generating the precise levels of the activator form of GLI depends on its concentration at the cilium tip. The mechanisms underlying this critical step in Hh signaling are unclear.

View Article and Find Full Text PDF

Intraflagellar transport (IFT) coordinates the transport of cargo in cilia and is essential for ciliary function. CILK1 has been identified as a key regulator of IFT. The mechanism by which it acts has, however, remained unclear.

View Article and Find Full Text PDF

Role of Mahendra Maneuver in Sinusitis and Eustachian Tube Dysfunction.

Indian J Otolaryngol Head Neck Surg

January 2025

Indian Institute of Ear Diseases, Muzaffarnagar, Uttar Pradesh India.

The article titled "Role of the Maneuver in Sinusitis and Eustachian Tube Dysfunction" explores the efficacy of a novel technique known as the Maneuver. Sinusitis and Eustachian tube dysfunction are prevalent respiratory conditions often linked to impaired mucociliary flow and poor nasal clearance. Traditional maneuvers such as the Toynbee and Valsalva techniques provide temporary relief by forcefully opening the Eustachian tube but carry risks of injury and complications and does not work for sinusitis.

View Article and Find Full Text PDF

The present study aimed to assess and compare the effect of smoking on ultrastructure morphology of nasal mucosa between smokers and nonsmokers. The study included 50 subjects aged 25-62 years who were planned for rhinological surgical procedures. Subjects were divided into 3 groups- group 1 (nonsmoker), group 2 (smokers taking 1 pack/day or less), group 3 (smokers taking 2 pack/day or more).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!