This study integrates metabolites from Forsythia suspensa (FS) and gut microbiota GM to assess combined therapeutic efficacy against drug-induced liver injury (DILI) using network pharmacology and molecular docking. Metabolites of FS and GM were retrieved from the NPASS and gutMGene databases, respectively. Relevant targets for metabolites and DILI-related targets were identified through public databases. The PPI network and KEGG pathway analysis were employed to identify hub targets and key signalling pathways. Furthermore, we performed a molecular docking assay on the active metabolites and targets to verify the network pharmacological concept. The physicochemical properties and toxicity of identified key metabolites were assessed using in silico platforms. 19 final targets were recognized as key proteins responsible for the alleviation of DILI by FS and GM metabolites, with ESR1 emerging as a central target in the PPI network. The estrogen signalling pathway, particularly involving ESR1, ESR2 and JUN genes, was identified as a key mediator in the therapeutic effects. Four GM metabolites (baicalein, luteolin, lunularin and 2,3-bis(3,4-dihydroxybenzyl)butyrolactone) and two FS metabolites (pinoresinol and isolariciresinol) were identified as non-toxic, promising candidates. In conclusion, metabolites from FS and GM may exert a potent synergistic effect on DILI through modulation of the estrogen signalling pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1080/21691401.2025.2475088DOI Listing

Publication Analysis

Top Keywords

molecular docking
12
metabolites
9
gut microbiota
8
drug-induced liver
8
liver injury
8
network pharmacology
8
pharmacology molecular
8
ppi network
8
identified key
8
estrogen signalling
8

Similar Publications

The discovery of novel, selective inhibitors targeting CDK2 and PIM1 kinases, which regulate cell survival, proliferation, and treatment resistance, is crucial for advancing cancer therapy. This study reports the design, synthesis, and biological evaluation of three novel pyrazolo[3,4-]pyridine derivatives (), confirmed spectral analyses. These compounds were assessed for anti-cancer activity against breast, colon, liver, and cervical cancers using the MTT assay.

View Article and Find Full Text PDF

Background: Although the SARS-CoV-2 and dengue viruses seriously endanger human health, there is presently no vaccine that can stop a person from contracting both viruses at the same time. In this study, four antigens from SARS-CoV-2 and dengue virus were tested for immunogenicity, antigenicity, allergenicity, and toxicity and chosen to predict dominant T- and B-cell epitopes.

Methods: For designing a multi-epitope vaccine, the sequences were retrieved, and using bioinformatics and immunoinformatics, the physicochemical and immunological properties, as well as secondary structures, of the vaccine were predicted and studied.

View Article and Find Full Text PDF

Unlabelled: Premature ovarian insufficiency (POI) is a condition marked by premature depletion of ovarian function, affecting a significant portion of women. The objective of this study is to assess the therapeutic efficacy of Yijing Hugui decoction (YJHGD) in the treatment of POI and to elucidate its pharmacological mechanisms. In this study, network pharmacology was used to identify key bioactive compounds in YJHGD, and the components were characterized using LC-MS.

View Article and Find Full Text PDF

Structural Dynamics of OATP1A2 in Mediating Paclitaxel Transport Mechanism in Breast Cancer.

Nanotheranostics

March 2025

Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow- 226025, Uttar Pradesh, India.

Breast cancer remains a significant global health challenge, with drug resistance and poor bioavailability of chemotherapeutic agents like paclitaxel (PTX) presenting obstacles to effective treatment. This study investigates the potential role of the Solute Carrier Organic Anion Transporter Polypeptide 1A2 (OATP1A2) in PTX transport using computational approaches. We employed computational modeling, molecular docking, and molecular dynamics (MD) simulations to elucidate the structural dynamics of OATP1A2 and its interaction with PTX.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!