Background: The mycobiome, representing the fungal component of microbial communities, is increasingly acknowledged as an integral part of the gut microbiome. However, research in this area remains relatively limited. The characterization of mycobiome taxa from metagenomic data is heavily reliant on the quality of the software and databases. In this study, we evaluated the feasibility of mycobiome profiling using existing bioinformatics tools on simulated fungal metagenomic data.
Results: We identified seven tools claiming to perform taxonomic assignment of fungal shotgun metagenomic sequences. One of these was outdated and required substantial modifications of the code to be functional and was thus excluded. To evaluate the accuracy of identification and relative abundance of the remaining tools (Kraken2, MetaPhlAn4, EukDetect, FunOMIC, MiCoP, and HumanMycobiomeScan), we constructed 18 mock communities of varying species richness and abundance levels. The mock communities comprised up to 165 fungal species belonging to the phyla Ascomycota and Basidiomycota, commonly found in gut microbiomes. Of the tools, FunOMIC and HumanMycobiomeScan needed source code modifications to run. Notably, only one species, Candida orthopsilosis, was consistently identified by all tools across all communities where it was included. Increasing community richness improved precision of Kraken2 and the relative abundance accuracy of all tools on species, genus, and family levels. MetaPhlAn4 accurately identified all genera present in the communities and FunOMIC identified most species. The top three tools for overall accuracy in both identification and relative abundance estimation were EukDetect, MiCoP, and FunOMIC, respectively. Adding 90% and 99% bacterial background did not significantly impact these tools' performance. Among the whole genome reference tools (Kraken2, HMS, and MiCoP), MiCoP exhibited the highest accuracy when the same reference database was used.
Conclusion: Our survey of mycobiome-specific software revealed a very limited selection of such tools and their poor robustness due to error-prone software, along with a significant lack of comprehensive databases enabling characterization of the mycobiome. None of the implemented tools fully agreed on the mock community profiles. FunOMIC recognized most of the species, but EukDetect and MiCoP provided predictions that were closest to the correct compositions. The bacterial background did not impact these tools' performance. Video Abstract.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11887097 | PMC |
http://dx.doi.org/10.1186/s40168-025-02048-3 | DOI Listing |
Proc Natl Acad Sci U S A
March 2025
Department of Biomedical Engineering, and Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708.
CRISPR-Cas9 systems have revolutionized biotechnology, creating diverse new opportunities for biomedical research and therapeutic genome and epigenome editing. Despite the abundance of bacterial CRISPR-Cas9 systems, relatively few are effective in human cells, limiting the overall potential of CRISPR technology. To expand the CRISPR-Cas toolbox, we characterized a set of type II CRISPR-Cas9 systems from select bacterial genera and species encoding diverse Cas9s.
View Article and Find Full Text PDFPLoS One
March 2025
Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, Southwest Forestry University, Kunming, Yunnan, China.
Rhus chinensis, a native plant species of China, possesses significant economic value in the ornamental sector. This study investigates the floral fragrance components and release patterns of R. chinensis, thus providing a theoretical foundation for the utilization of its floral fragrance.
View Article and Find Full Text PDFBrief Bioinform
March 2025
Division of Microbiology, Tulane National Primate Research Center, Tulane University, Covington, LA 70433, United States.
This work aims to (1) identify microbial and metabolic alterations and (2) reveal a shift in phenylalanine production-consumption equilibrium in individuals with HIV. We conducted extensive searches in multiple databases [MEDLINE, Web of Science (including Cell Press, Oxford, HighWire, Science Direct, IOS Press, Springer Nature, PNAS, and Wiley), Google Scholar, and Embase] and selected two case-control 16S data sets (GenBank IDs: SRP039076 and EBI ID: ERP003611) for analysis. We assessed alpha and beta diversity, performed univariate tests on genus-level relative abundances, and identified significant microbiome features using random forest.
View Article and Find Full Text PDFJ Epidemiol Glob Health
March 2025
Microbiological Type Culture Collection and Gene Bank (MTCC), CSIR Institute of Microbial Technology, Chandigarh, 160036, India.
Introduction: Antimicrobial resistance (AMR) is one of the major global concerns in the current scenario. Mass-gathering events in fast-developing and densely populated areas may contribute to antibiotic resistance. Despite meticulous planning and infrastructure development, the effect of mass gatherings on microbial ecosystems and antibiotic resistance must be investigated.
View Article and Find Full Text PDFCurr Microbiol
March 2025
College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China.
Tobacco bacterial wilt (TBW), caused by Ralstonia solanacearum, significantly impacts tobacco yield and quality, leading to substantial economic losses. This study investigated the effects of the microbial agents JX (Pichia sp. J1 and Klebsiella oxytoca ZS4) on the soil properties, rhizospheric microbial community, tobacco agronomic traits, and TBW incidence through field experiments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!