The use of mesenchymal stem cells (MSCs) from perinatal tissue sources has gained attention due to their availability and lack of significant ethical or moral concerns. These cells have a higher proliferative capability than adult MSCs and less immunogenic or tumorigenesis risk than fetal and embryonic stem cells. Additionally, they do not require invasive isolation methods like fetal and adult MSCs. We reviewed the main biological and therapeutic aspects of perinatal MSCs in a three-part article. In the first part, we revised the main biological features and characteristics of MSCs and the advantages of perinatal MSCs over other types of SCs. In the second part, we provided a detailed molecular background for the main biomarkers that can be used to identify MSCs. In the final part, we appraised the therapeutic application of perinatal MSCs in four major degenerative disorders: degenerative disc disease, retinal degenerative diseases, ischemic heart disease, and neurodegenerative diseases. In conclusion, there is no single specific molecular marker to identify MSCs. We recommend using at least two positive markers of stemness (CD29, CD73, CD90, or CD105) and two negative markers (CD34, CD45, or CD14) to exclude the hematopoietic origin. Moreover, utilizing perinatal MSCs for managing degenerative diseases presents a promising therapeutic approach. This review emphasizes the significance of employing more specialized progenitor cells that originated from the perinatal MSCs. The review provides scientific evidence from the literature that applying these progenitor cells in therapeutic procedures provides a greater regenerative capacity than the original primitive MSCs. Finally, this review provides a valuable reference for researchers exploring perinatal MSCs and their therapeutic applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11889844 | PMC |
http://dx.doi.org/10.1186/s13287-025-04254-0 | DOI Listing |
Cell Mol Neurobiol
March 2025
Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Kangfu Qian Street 7, Zhengzhou, 450052, China.
Neuroinflammation is a key factor in the development of preterm white matter injury (PWMI), leading to glial cell dysfunction, arrest of oligodendrocyte maturation, and long-term neurological damage. As a potential therapeutic strategy, mesenchymal stem cells (MSCs) exhibit significant immunomodulatory and regenerative potential. Recent studies suggest that the primary mechanism of MSC action is their paracrine effects, particularly mediated by extracellular vesicles, with MSC-derived exosomes (MSC-Exos) being the key mediators.
View Article and Find Full Text PDFStem Cell Res Ther
March 2025
OU-WB Institute for Stem Cell and Regenerative Medicine, Oakland University, Rochester, MI, 48309, USA.
The use of mesenchymal stem cells (MSCs) from perinatal tissue sources has gained attention due to their availability and lack of significant ethical or moral concerns. These cells have a higher proliferative capability than adult MSCs and less immunogenic or tumorigenesis risk than fetal and embryonic stem cells. Additionally, they do not require invasive isolation methods like fetal and adult MSCs.
View Article and Find Full Text PDFBiology (Basel)
January 2025
Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy.
End-stage liver disease (ESLD), affecting millions worldwide, represents a challenging issue for clinical research and global public health. Liver transplantation is the gold standard therapeutic approach but shows some drawbacks. Hepatocyte transplantation could be a reliable alternative for patient treatment.
View Article and Find Full Text PDFStem Cell Res Ther
February 2025
School of Biomedical Sciences, Faculty of Medicine; CUHK-GIBH CAS Joint Research Laboratory On Stem Cell and Regenerative Medicine; Key Laboratory for Regenerative Medicine of the Ministry of Education of China, The Chinese University of Hong Kong, Hong Kong SAR, China.
Background: Diabetic foot ulcers (DFUs) represent a major complication of diabetes, often leading to poor healing outcomes with conventional treatments. Mesenchymal stem cell (MSC) therapies have emerged as a promising alternative, given their potential to modulate various pathways involved in wound healing. This study evaluates and compares the therapeutic potential of MSCs derived from perinatal tissues-human umbilical cord MSCs (hUCMSCs), human chorionic villi MSCs (hCVMSCs), and human decidua basalis MSCs (hDCMSCs)-in a diabetic wound healing model.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy.
Mesenchymal stromal cells (MSCs) and their secretome show intrinsic antitumor properties, however, the anti-cancer effects of MSCs remain debated and depend on the cancer type or model. MSCs derived from discarded samples, such as human amniotic fluid (hAFSC), have been introduced as an attractive and potent stem cell source for clinical applications due to their collection procedures, which minimize ethical issues. Until now, various studies have obtained controversial results and poor understanding of the mechanisms behind the effects of perinatal cells on cancer cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!