Progranulin (PGRN) is a secretory precursor protein composed of 7.5 granulins (GRNs). Mutations in the PGRN-encoding gene Grn have been associated with neurodegenerative diseases. In our previous study, we found that Grn depletion in microglia disrupted glucose metabolism in mice fed a normal chow diet (NCD) but prevented the development of obesity in mice on a high-fat diet (HFD). Given that PGRN regulates lysosomal functions, we investigated lysosomal changes in the hypothalamus of mice with microglia-specific Grn depletion. Here we report that microglia-specific Grn depletion affects the lysosomes of hypothalamic proopiomelanocortin (POMC) neurons and microglia in diet-dependent fashion. Under NCD conditions, microglial Grn depletion led to increased lysosome mass, reduced lysosomal degradative capacity, and accumulation of lipofuscin and cytoplasmic TDP-43 in hypothalamic cells, indicative of lysosomal stress and dysfunction. In contrast, under HFD conditions, the absence of microglial Grn suppressed HFD-induced hypothalamic lysosomal stress. In cultured hypothalamic neurons and microglia, PGRN treatment enhanced lysosomal function, an effect inhibited by PGRN cleavage but restored when its cleavage was blocked. Since HFD feeding promotes the cleavage of hypothalamic PGRN into multi-GRNs and GRNs, the diet-dependent lysosomal changes observed in microglial Grn-depleted mice may be linked to PGRN cleavage. We also demonstrated that intracerebroventricular injection of bafilomycin, which induces lysosomal stress, resulted in microglial activation, inflammation, disrupted POMC neuronal circuitry, and impaired leptin signaling in the hypothalamus-common features of obesity. Our results indicate that microglial PGRN plays an important role in maintaining hypothalamic lysosomal function under healthy diet conditions, whereas increased cleavage of microglial PGRN in states of overnutrition disrupts hypothalamic lysosomal function, thereby fostering hypothalamic inflammation and obesity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11887206PMC
http://dx.doi.org/10.1186/s12974-025-03370-1DOI Listing

Publication Analysis

Top Keywords

hypothalamic lysosomal
16
lysosomal function
16
grn depletion
16
lysosomal stress
12
lysosomal
11
hypothalamic
9
pgrn
8
lysosomal changes
8
microglia-specific grn
8
neurons microglia
8

Similar Publications

Unlabelled: Macroautophagy (autophagy hereafter) captures intracellular components and delivers them to lysosomes for degradation and recycling . In adult mice, autophagy sustains metabolism to prevent wasting by cachexia and to survive fasting, and also suppresses inflammation, liver steatosis, neurodegeneration, and lethality . Defects in autophagy contribute to metabolic, inflammatory and degenerative diseases, however, the specific mechanisms involved were unclear .

View Article and Find Full Text PDF

Progranulin (PGRN) is a secretory precursor protein composed of 7.5 granulins (GRNs). Mutations in the PGRN-encoding gene Grn have been associated with neurodegenerative diseases.

View Article and Find Full Text PDF

Mechanisms of Low Temperature-induced GH Resistance via TRPA1 Channel Activation in Male Nile Tilapia.

Endocrinology

January 2025

Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065 P.R., China.

Low temperatures significantly impact growth in ectothermic vertebrates, though the underlying mechanisms remain poorly understood. This study investigates the role of transient receptor potential ankyrin 1 (TRPA1) channels in mediating low-temperature effects on growth performance and GH resistance in Nile tilapia (Oreochromis niloticus). Prolonged exposure to low temperature (16 °C for 35 days) impaired growth performance and induced GH resistance, characterized by elevated serum GH levels and decreased IGF-1 levels.

View Article and Find Full Text PDF

Excessive consumption of vegetable oils such as soybean and canolla oils containing ω-6 polyunsaturated fatty acids is considered one of the most important epidemiological factors leading to the progression of lifestyle-related diseases. However, the underlying mechanism of vegetable-oil-induced organ damage is incompletely elucidated. Since proopiomelanocortin (POMC) neurons in the hypothalamus are related to the control of appetite and energy expenditure, their cell degeneration/death is crucial for the occurrence of obesity.

View Article and Find Full Text PDF

Mechanisms of cancer cachexia and targeted therapeutic strategies.

Biochim Biophys Acta Rev Cancer

November 2024

Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China. Electronic address:

Tumor cachexia is a multifactorial syndrome characterized by systemic dysfunction, including anorexia and severe weight loss that is resistant to standard nutritional interventions. It is estimated that approximately 20 % of cancer patients succumb to cachexia in the later stages of their disease. Thus, understanding its pathogenesis is vital for improving therapeutic outcomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!