Background: Real-time PCR (qPCR) diagnostics developed for use in human clinical settings have been implemented to identify new animal hosts of the gastrointestinal protozoan Dientamoeba fragilis. The gut microbiome varies between species; unrecognised cross-reactivity could occur when applying these assays to new animal hosts. The use of qPCR diagnostics was assessed for the identification of new animal hosts of the gastrointestinal protozoan Dientamoeba fragilis.

Methods: Forty-nine cattle, 84 dogs, 39 cats and 254 humans were screened for D. fragilis using two qPCR assays: EasyScreen (Genetic Signatures) and a laboratory-based assay commonly used in Europe. The reliability of the identifications made by these assays were assessed using melt curve analysis of qPCR products, conventional PCR targeting the SSU rDNA sequencing and NGS amplicon sequencing of qPCR product.

Results: PCR products from the D. fragilis identified in cattle had a 9 °C cooler melt curve than when detected in humans. This melt curve discrepancy, indicative of cross-reactivity with an unknown organism, was investigated further. DNA sequencing determined that Simplicimonas sp. was the genera responsible for this cross-reactivity in cattle specimens. Dientamoeba fragilis was not detected in either dogs or cats. There was a discrepancy in the number of positive samples detected using the two qPCR assays when applied to human samples. The EasyScreen assay detected 24 positive samples; the laboratory-based assay detected an additional 34 positive samples. Of the discrepant samples, 5 returned sequence data for D. fragilis, and 29 were unsupported (false) positive samples.

Conclusions: Analysis of the melt curve after the qPCR reaction is a valuable technique to help differentiate samples containing D. fragilis compared to cross-reactions with non-target organisms. The identification of new animal hosts requires further evidence from either microscopy or DNA sequencing to confirm the presence of D. fragilis. Additionally, to reduce the risk of false-positive results due to non-specific amplification, we recommend reducing the number of PCR cycles to less than 40. Based on these results, we consider the ramifications of this identified cross-reactivity to the known host species distribution of D. fragilis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11889766PMC
http://dx.doi.org/10.1186/s13071-025-06730-1DOI Listing

Publication Analysis

Top Keywords

animal hosts
16
melt curve
16
dientamoeba fragilis
12
positive samples
12
fragilis
9
real-time pcr
8
qpcr diagnostics
8
hosts gastrointestinal
8
gastrointestinal protozoan
8
protozoan dientamoeba
8

Similar Publications

Multi-omics uncover acute stress vulnerability through gut-hypothalamic communication in ducks.

Br Poult Sci

March 2025

State Key Laboratory for Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.

1. The avian gut hosts a complex and dynamic microbial ecosystem, which is essential for regulating host organ function. However, the relationship between the gut microbiota and the hypothalamic axis in acute stress vulnerability in ducks remains unclear.

View Article and Find Full Text PDF

The Window on Animal Health at the North Carolina Museum of Natural Sciences hosts the VetPAC Museum Medicine Internship, an undergraduate student internship program founded in collaboration with the Veterinary Professions Advising Center at North Carolina State University. It is designed to train pre-veterinary track students for wildlife and exotic animal husbandry and medicine in a unique museum clinical facility surrounded by large windows and a two-way audio system to facilitate public interaction during veterinary casework. The development of veterinary skills for interns is achieved via four competency-based stages: stage 1, veterinary assisting; stage 2, veterinary diagnostics; stage 3, medical case management and presentation; and stage 4, biosecurity and animal welfare.

View Article and Find Full Text PDF

-Induced Liver Damage Through Ferroptosis in Rat Model.

Cells

February 2025

College of Veterinary Medicine, Jilin University, Changchun 130062, China.

(1) Background: (CE) is an -induced worldwide parasitic zoonosis and is a recognized public health and socio-economic concern. The liver is the major target organ for CE's infective form protoscolex (PSCs), which causes serious liver damage and endangers the host's life. Reports show that PSC infection causes liver cell Fe metabolism disorder and abnormal deposition of Fe in liver cells and results in liver cell death.

View Article and Find Full Text PDF

Novel associations among insect herbivores and trees: Patterns of occurrence and damage on pines and eucalypts.

Ecol Appl

March 2025

Grupo de Ecología de Poblaciones de Insectos, Instituto de Investigaciones Forestales y Agropecuarias Bariloche, INTA - CONICET, Bariloche, Rio Negro, Argentina.

Globalization has led to a significant increase in the establishment of forest plantations with exotic species and to the accidental introduction of forest insects worldwide. Cumulatively, these factors contribute to the increased occurrence of novel associations between phytophagous insects and trees, leading to new interactions between species that have not historically co-occurred. Here, we reviewed the patterns of novel associations between herbivorous insects and pines and eucalypts at a global scale and identified factors that could favor the occurrence of novel associations and their impacts on forestry.

View Article and Find Full Text PDF

Adult Hymenolepis nana and its excretory-secretory products elicit mouse immune responses via tuft/IL-13 and FOXM1 signaling pathways.

Parasit Vectors

March 2025

The Guizhou Key Laboratory of Microbio and Infectious Disease Prevention & Control/The Key and Characteristic Laboratory of Modern Pathogenicity Biology, Departments of Parasitology & Histology and Embryology, School of Basic Medical Sciences, Guizhou Medical University, Room 220, E-1 Building, Ankang Avenue No. 6, Guiyang, 561113, China.

Background: Hosts typically elicit diverse immune responses to the infection of various parasitic worms, with intestinal epithelial cells playing pivotal roles in detecting parasite invasion. Hymenolepis nana (H. nana) is a zoonotic parasitic worm that resides in the host's intestine.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!