Although significant progress has been made in the development of antidepressants, a large subpopulation of individuals remains unresponsive to existing treatments. Ginsenoside Rg1 (Rg1), a natural compound with well-defined antidepressant effects and low-cost administrations, holds therapeutic promise but requires mechanistic elucidation for clinical translation. Based on our previous finding that Rg1 rescued astrocytic connexin43 (Cx43) downregulation in depression models, we investigated its brain-wide effects and molecular mechanisms in chronic unpredictable stress (CUS)-induced rats. Male rats subjected to CUS received Rg1 (40 mg· kg ·d, i.g.) for 8 weeks. Multimodal neuroimaging (fMRI and PET/CT) revealed that Rg1 restored functional connectivity and ameliorated neuroinflammation in CUS rats, with the prelimbic area identified as a critical target region. Through integrated proteomic profiling, molecular docking, and surface plasmon resonance analyses, we pinpointed Cx43-mediated gap junction as the primary target underlying Rg1's therapeutic action. Mechanistically, we showed that Yes-associated protein (YAP), the primary effector of the Hippo pathway, was translocated into the nucleus to promote the expression of specific genes including those involved in inflammation. Notably, we demonstrated that Rg1 potentiated the Cx43-YAP interaction in the cytoplasm and restricted YAP nuclear translocation activity. The degradation of Cx43 and potentiation of YAP nuclear translocation might represent a novel mechanism for the pathogenesis of depression. Specific blockade of Cx43-based gap junctions, knockdown of Cx43 expression in primary cultured astrocytes, and conditional knockout of astrocytic Cx43 in mice promoted YAP nuclear translocation and retarded the antidepressant effects of Rg1. Accordingly, the Cx43-YAP connection may represent a potential therapeutic target for the antidepressant mechanism of Rg1.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41401-025-01515-9 | DOI Listing |
Brain Struct Funct
March 2025
The School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia.
The Hippo signalling cascade is an evolutionarily conserved pathway critical for the development of numerous organ systems and is required for the development of many parts of the mammalian nervous system, including the cerebellum. The Hippo pathway converges, via the nuclear YAP/TAZ co-transcription factors, on transcription factors of the TEA Domain (TEAD) family (TEAD1-4) and promotes the expression of pro-proliferative genes. Despite the importance of TEAD function, our understanding of spatial and temporal expression of this family is limited, as is our understanding of which TEAD family members regulate Hippo-dependent organ development.
View Article and Find Full Text PDFThe first cell fate bifurcation in mammalian development directs cells toward either the trophectoderm (TE) or inner cell mass (ICM) compartments in preimplantation embryos. This decision is regulated by the subcellular localization of a transcriptional co-activator YAP and takes place over several progressively asyn-chronous cleavage divisions. As a result of this asynchrony and variable arrangement of blastomeres, reconstructing the dynamics of the TE/ICM cell specification from fixed embryos is extremely challenging.
View Article and Find Full Text PDFDuring the first cell fate decision in mammalian embryos the inner cell mass cells, which will give rise to the embryo proper and other extraembryonic tissues, segregate from the trophectoderm cells, the precursors of the placenta. Cell fate segregation proceeds in a gradual manner encompassing two rounds of cell division, as well as cell positional and morphological changes. While it is known that the activity of the Hippo signaling pathway and the subcellular localization of its downstream effector YAP dictate lineage specific gene expression, the response of YAP to these dynamic cellular changes remains incompletely understood.
View Article and Find Full Text PDFCommun Biol
March 2025
Institute of Molecular Biology, Biocenter, Medical University Innsbruck, Innsbruck, Austria.
Iron homeostasis is key to both the survival of virtually all organisms and the virulence of fungi including Aspergillus fumigatus, a human fungal pathogen causing life-threatening invasive infections. Unlike the extensively studied fungal species Saccharomyces cerevisiae and Schizosaccharomyces pombe, A. fumigatus encodes an uncharacterized homolog of vertebrate ferroportin (Fpn1), termed FpnA.
View Article and Find Full Text PDFActa Pharmacol Sin
March 2025
School of Pharmacy, Hunan University of Chinese Medicine & Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, 410208, China.
Although significant progress has been made in the development of antidepressants, a large subpopulation of individuals remains unresponsive to existing treatments. Ginsenoside Rg1 (Rg1), a natural compound with well-defined antidepressant effects and low-cost administrations, holds therapeutic promise but requires mechanistic elucidation for clinical translation. Based on our previous finding that Rg1 rescued astrocytic connexin43 (Cx43) downregulation in depression models, we investigated its brain-wide effects and molecular mechanisms in chronic unpredictable stress (CUS)-induced rats.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!