Growing world population and deteriorating climate conditions necessitate the development of new crops with high yields and resilience. CRISPR-Cas-mediated genome engineering presents unparalleled opportunities to engineer crop varieties cheaper, easier and faster than ever. In this Review, we discuss how the CRISPR-Cas toolbox has rapidly expanded from Cas9 and Cas12 to include different Cas orthologues and engineered variants. We present various CRISPR-Cas-based methods, including base editing and prime editing, which are used for precise genome, epigenome and transcriptome engineering, and methods used to deliver the genome editors into plants, such as bacterial-mediated and viral-mediated transformation. We then discuss how promoter editing and chromosome engineering are used in crop breeding for trait engineering and fixation, and important applications of CRISPR-Cas in crop improvement, such as de novo domestication and enhancing tolerance to abiotic stresses. We conclude with discussing future prospects of plant genome engineering.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41580-025-00834-3 | DOI Listing |
ACS Sens
March 2025
Centre for Innovative Materials for Health, School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand.
Herein, a novel and simple electrospray (ES) printing technique was developed for the fabrication of ultrathin graphene layers with precisely controlled nanometer-scale thickness, where graphene oxide (GO) was electrosprayed on wafers and subsequently chemically reduced into reduced GO (rGO). Utilizing that technique, we prepared ultrathin rGO in-plane graphene field-effect transistor (GFET)-based biosensors coupled with a portable prototype measuring system for point-of-care detection of pathogens. We illustrate the use of such prepared GFETs to detect COVID-19, using the SARS-CoV-2 nucleocapsid protein antigen (N-protein) and genomic viral RNA as detection targets.
View Article and Find Full Text PDFG3 (Bethesda)
March 2025
Institute of Forest Sciences (ICIFOR-INIA), Consejo Superior de Investigaciones Cientificas, 28040 Madrid, Spain.
Stone pine (Pinus pinea L.) is an emblematic tree species within the Mediterranean basin, with high ecological and economic relevance due to the production of edible nuts. Breeding programmes to improve pine nut production started decades ago in Southern Europe but have been hindered by the near absence of polymorphisms in the species genome and the lack of suitable genomic tools.
View Article and Find Full Text PDFOxygen plays a critical role in early neural development in brains, particularly before establishment of complete vasculature; however, it has seldom been investigated due to technical limitations. This study uses an in vitro human cerebral organoid model with multiomic analysis, integrating advanced microscopies and single-cell RNA sequencing, to monitor tissue oxygen tension during neural development. Results reveal a key period between weeks 4 and 6 with elevated intra-organoid oxygen tension, altered energy homeostasis, and rapid neurogenesis within the organoids.
View Article and Find Full Text PDFSci Adv
March 2025
Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia.
Pancreatic cancer (PC) is a highly metastatic malignancy. More than 80% of patients with PC present with advanced-stage disease, preventing potentially curative surgery. The neuropeptide Y (NPY) system, best known for its role in controlling energy homeostasis, has also been shown to promote tumorigenesis in a range of cancer types, but its role in PC has yet to be explored.
View Article and Find Full Text PDFJ Immunol
March 2025
Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, United States.
Natural killer (NK) cells express activating receptors that signal through ITAM (immunoreceptor tyrosine-based activation motif)-bearing adapter proteins. The phosphorylation of each ITAM creates binding sites for SYK and ZAP70 protein tyrosine kinases to propagate downstream signaling including the induction of Ca2+ influx. While all immature and mature human NK cells coexpress SYK and ZAP70, clonally driven memory or adaptive NK cells can methylate SYK genes, and signaling is mediated exclusively using ZAP70.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!