Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41372-025-02236-x | DOI Listing |
J Colloid Interface Sci
March 2025
College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China. Electronic address:
The single electromagnetic (EM) wave loss mechanism leads to suboptimal microwave absorption in dielectric materials, whereas, introducing different materials and constructing distinctive microstructures can significantly improve microwave absorption. In this study, TiB and TiB@BN powders were synthesized using boron thermal reduction and chemical solution methods. Their microwave absorption and thermal properties were systematically analyzed.
View Article and Find Full Text PDFAdv Mater
March 2025
School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China.
Bioelectrodes function as a critical interface for signal transduction between living organisms and electronics. Conducting polymers (CPs), particularly poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate), are among the most promising materials for bioelectrodes, due to their electrical performance, high compactness, and ease of processing, but often suffer from degradation or de-doping even in some common environments (e.g.
View Article and Find Full Text PDFNanomaterials (Basel)
March 2025
School of Mechanical Engineering, Chengdu University, Chengdu 610106, China.
Carbon-based microwave absorption materials have garnered widespread attention as lightweight and efficient wave absorbers, emerging as a prominent focus in the field of functional materials research. In this work, FeNi nanoparticles, synthesized in situ within graphite interlayers, were employed as catalysts to grow carbon nanofibers in situ via intercalation chemical vapor deposition (CVD). We discovered that amorphous carbon nanofibers (CNFs) can exfoliate and separate highly conductive graphite nanosheets (GNS) from the interlayers.
View Article and Find Full Text PDFACS Electrochem
March 2025
Institute of Physical Chemistry, University of Innsbruck, Innrain 52c, A-6020 Innsbruck, Austria.
Solid oxide cell technologies play a crucial role in climate change mitigation by enabling the reversible storage of renewable energy. Understanding the electrochemical high-temperature reaction mechanisms and the catalytic role of the electrode and electrolyte materials is essential for advancing power-to-H technologies. Despite its significance, limited spectroscopic research focusing on nickel and yttria-stabilized zirconia (Ni/YSZ) is available.
View Article and Find Full Text PDFSci Rep
March 2025
Department of Public Health, University of Naples Federico II, Via Pansini 5, 80131, Napoli, NA, Italy.
In this paper, the authors describe an experimental study carried out on biological samples consisting of a 96-h mature Methicillin-Resistant-Staphylococcus-Aureus biofilm. The initial objective was to electrically characterize the biofilm using impedance spectroscopy, by scanning a wide range of frequencies [1 Hz ÷ 10 MHz]. Concurrently, confocal microscopy observations, XTT assays, crystal violet staining method and colony-forming unit assay were performed to characterize the biological activity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!