Accumulating evidence has reported that the intestinal microbiota could play important roles in the occurrence and progression of severe trauma. However, the hypothesized potential targeted intestinal microbiota to mediate and regulate the levels of inflammatory cytokines and promote rapid recovery of body after severe trauma remains unclear. This study was aimed to explore the changes and correlation of intestinal microbiota and inflammatory cytokines in rats with severe crush and fracture trauma. The controlled laboratory study design was used, and a crush and fracture severe trauma rat model was established. 16S rRNA high-throughput gene sequencing and ELISA were used to analyze the changes in intestinal microbiota and inflammatory cytokines within one week after trauma. The correlation between intestinal microbiota and inflammatory cytokines was also analyzed. Loss of overall diversity and expansion of intestinal microbiota in the rats due to severe trauma was observed. Specifically, there was a significant increase in the abundance of Muribaculaceae [LDA (Linear Discriminant Analysis)-value = 4.814, P = 0.014] after severe trauma, while Prevotella (LDA-value = 5.235, P = 0.020) and Alloprevotella (LDA-value = 4.443, P = 0.015) were slightly lower in the trauma group than in the control group. The levels of inflammatory cytokines (IL-1α, IL-6, IL-8 and TNF-α) in the trauma group decreased from the first day to the third day and continued to increase until one week after the trauma. Prevotellaceae_UCG_001 was correlated with TNF-a (R = 0.411, P = 0.033); Lactobacillus was negatively correlated with IL-6 (R = - 0.434, P = 0.024) and IL-1α (R = - 0.419, P = 0.030) and positively correlated with IL-8 (R = 0.391, P = 0.045); and Lachnospiraceae_NK4A136_group (R = - 0.559, P = 0.027) and Muribaculaceae (R = - 0.568, P = 0.024) were negatively correlated with IL-8. Severe trauma shows stress-like activities by negatively modulating intestinal microbiota and affecting certain inflammatory cytokines contributing to host health, which implies that the regulation of potentially targeted intestinal microbiota, and further mediating and maintaining the homeostasis of inflammatory cytokines, is expected to promote the accelerating recovery of the body after severe trauma.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11889259 | PMC |
http://dx.doi.org/10.1038/s41598-025-92212-4 | DOI Listing |
Br Poult Sci
March 2025
College of Animal Science and Technology, Jilin Agricultural University, Changchun, China.
1. Faecal microbiota transplantation (FMT) is a technique that promotes gut microbiota diversity and abundance by transplantation of faeces into a recipient's gastrointestinal tract multiple routes.2.
View Article and Find Full Text PDFCells
March 2025
Program in Cell, Molecular, and Structural Biology, Miami University, Oxford, OH 45056, USA.
The crisis of metabolic and mental disorders continues to escalate worldwide. A growing body of research highlights the influence of tryptophan and its metabolites, such as serotonin, beyond their traditional roles in neural signaling. Serotonin acts as a key neurotransmitter within the brain-gut-microbiome axis, a critical bidirectional communication network affecting both metabolism and behavior.
View Article and Find Full Text PDFCells
February 2025
Department of Gastroenterology and Internal Medicine, Medical University of Bialystok, 15-276 Bialystok, Poland.
An association between gut microbiota and the development of pancreatic ductal adenocarcinoma (PDAC) has been previously described. To better understand the bacterial microbiota changes accompanying PDAC promotion and progression stimulated by inflammation and fecal microbiota transplantation (FMT), we investigated stool and pancreatic microbiota by 16s RNA-based metagenomic analysis in mice with inducible acinar transgenic expressions of KrasG12D, and age- and sex-matched control mice that were exposed to inflammatory stimuli and fecal microbiota obtained from mice with PDAC. Time- and inflammatory-dependent stool and pancreatic bacterial composition alterations and stool alpha microbiota diversity reduction were observed only in mice with a Kras mutation that developed advanced pancreatic changes.
View Article and Find Full Text PDFCancer Biol Med
March 2025
Hangzhou Institute of Medicine (HIM), Chinese Academy of Science, Hangzhou 310022, China.
Colorectal cancer (CRC) is a major contributor to global cancer-related mortality with increasing incidence rates in both developed and developing regions. Therefore, CRC presents a significant challenge to global health. The development of innovative tools for enhancing early CRC screening and diagnosis, along with novel treatments and therapies for improved management, remains an urgent necessity.
View Article and Find Full Text PDFGut Microbes
December 2025
Department of Nutrition Science, Purdue University, West Lafayette, IN, USA.
The gut microbiome is known to have a bidirectional relationship with sex hormone homeostasis; however, its role in mediating interactions between the primary regulatory axes of sex hormones and their productions is yet to be fully understood. We utilized both conventionally raised and gnotobiotic mouse models to investigate the regulatory role of the gut microbiome on the hypothalamic-pituitary-gonadal (HPG) axis. Male and female conventionally raised mice underwent surgical modifications as follows: (1) hormonally intact controls; (2) gonadectomized males and females; (3) gonadectomized males and females supplemented with testosterone and estrogen, respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!