Talc, as an important class of clay minerals constituting subducting oceanic crust, has long been known to undergo interlayer expansion by ~6% to contain net ~13 wt.% water into the 'so-called' 10 Å phase. Although subduction fluid is mildly alkaline and includes various salts and other dissolved species, its effect on the stability of subducting minerals has not yet been considered. Here, we report that subducting talc, when exposed to alkaline salty water conditions, breaks down to form a super-hydrated 15 Å phase at ~3.0 GPa and ~350 °C, corresponding to a depth of ~90-95 km along a cold subduction geotherm. The 15 Å phase remains stable down to ~125 km depth, where it transforms into the previously known 10 Å phase. Our combined experimental and computational results show that the super-hydrated 15 Å phase contains net ~31 wt.% water through interlayer expansion by ~60%. Our work thus demonstrates mineral transformation under more realistic subduction environments, which calls for reevaluation of subduction-related geochemistry and seismicity as well as water transportation into the deep Earth.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11889167PMC
http://dx.doi.org/10.1038/s41467-025-56672-6DOI Listing

Publication Analysis

Top Keywords

15 Å phase
16
cold subduction
8
interlayer expansion
8
10 Å phase
8
super-hydrated 15 Å
8
phase
6
formation 15 Å
4
phase expanded
4
expanded hydrated
4
hydrated mineral
4

Similar Publications

Insight into the Specific Adsorption of Cu(II) by a Zinc-Based Metal-Organic Framework Mediated via a Proton-Exchange Mechanism.

Langmuir

March 2025

China Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China.

In the context of scarce metal resources, the one-step separation and recovery of high-value copper metal ions from secondary resources is of significant importance and presents substantial challenges. This study identified a Zn-based triazole MOF (Zn(tr)(OAc)) with accessible and noncoordinated terminal hydroxyl groups within its framework. The Zn(tr)(OAc) surpasses most currently reported Cu-specific MOF adsorbents regarding adsorption capacity and Cu selectivity.

View Article and Find Full Text PDF

In Situ Raman Spectra and Machine Learning Assistant Thermal Annealing Optimization for Effective Phototransistors.

ACS Appl Mater Interfaces

March 2025

State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, P. R. China.

The relationship between the structure and function of condensed matter is complex and changeable, which is especially suitable for combination with machine learning to quickly obtain optimized experimental conditions. However, little research has been done on the effect of temperature on condensed matter and how it affects device performance because the difference between the in situ physical property parameters (which are lowered by the surface tension and mixing entropy) and the basic parameters of the bulk makes accurate AI predictions difficult. In this work, P3HT/ITIC was chosen as the donor/acceptor material for the active layer of organic phototransistors (OPTs).

View Article and Find Full Text PDF

In this study, the role of phosphorylation in the liquid-liquid phase separation (LLPS) of tau, the underlying driving forces, and the potential implications of this separation on protein conformation and subsequent protein aggregation were investigated. We compared in vivo-produced phosphorylated tau (p-tau) and nonphosphorylated tau under different coacervation conditions without adding crowding agents. Our findings revealed that spontaneous phase separation occurs exclusively in p-tau, triggered by a temperature shift from 4 °C to room temperature, and is driven by electrostatic and hydrophobic interactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!