Tetrabenazine (TBZ) is used in the treatment of psychiatric diseases, and it works by inhibiting vesicular monoamine transporter 2 (VMAT2) protein to exert a curative effect. TBZ is administered as the mixture of stereoisomers in clinical treatment. TBZ has two chiral centers, and therefore, it has four stereoisomers, and this greatly makes it difficult to separate the stereoisomers and to identify their configurations because of their high susceptibility to structural transformation. This study aims to develop a method to resolve TBZ into four individual peaks, corresponding to the four stereoisomers (1-4). Based on the different binding affinities between TBZ stereoisomers and VMAT2, the UF-UHPLC-QQQ/MS method is used to determine the absolute configuration of TBZ stereoisomers 1 and 2. Molecular docking simulations are used to verify the accuracy of UF-UHPLC-QQQ/MS. The configurations of stable stereoisomers 3 and 4 were confirmed by electron circular dichroism (ECD). The established analytical method was applied to determine the pharmacokinetics of each TBZ stereoisomer in vivo. It was found that the stereoisomer 1 (3R,11bR-TBZ) showed better bioavailability and more excretion than the other stereoisomers. The results of tissue distribution experiments indicated a much higher content of 3R,11bR-TBZ in the brain, suggesting that it may better penetrate the blood-brain barrier and exert its therapeutic effects there. The paper addresses the complex problem of separating and identifying stereoisomers with multiple chiral centers, which is a significant challenge in pharmaceutical chemistry. And this work could provide a basis for the preparation of TBZ stereoisomers and a reference for the method of separating drugs with multichiral centers and identifying unstable drugs based on their configurations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00216-025-05813-3 | DOI Listing |
Anal Bioanal Chem
March 2025
School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang, 110036, Liaoning Province, P.R. China.
Tetrabenazine (TBZ) is used in the treatment of psychiatric diseases, and it works by inhibiting vesicular monoamine transporter 2 (VMAT2) protein to exert a curative effect. TBZ is administered as the mixture of stereoisomers in clinical treatment. TBZ has two chiral centers, and therefore, it has four stereoisomers, and this greatly makes it difficult to separate the stereoisomers and to identify their configurations because of their high susceptibility to structural transformation.
View Article and Find Full Text PDFJ Pharm Biomed Anal
September 2016
Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901, Ribeirão Preto, SP, Brazil. Electronic address:
A new capillary electrophoresis method for the enantioselective analysis of cis- and trans- dihydrotetrabenazine (diHTBZ) after in vitro metabolism by human liver microsomes (HLMs) was developed. The chiral electrophoretic separations were performed by using tris-phosphate buffer (pH 2.5) containing 1% (w/v) carboxymethyl-β-CD as background electrolyte with an applied voltage of +15kV and capillary temperature kept at 15°C.
View Article and Find Full Text PDFExpert Rev Neurother
November 2011
Baylor College of Medicine, Department of Neurology, Parkinson's Disease Center and Movement Disorders Clinic, Houston, TX, USA.
Tetrabenazine (TBZ; Xenazine) is a potent, selective, reversible depletor of monoamines from nerve terminals. TBZ inhibits the vesicular monoamine transporter type 2 which, in humans, is expressed nearly exclusively in the brain. TBZ is rapidly metabolized in the liver by carbonyl reductase to stereoisomers of hydrotetrabenazine, some of which are potent inhibitors of vesicular monoamine transporter type 2.
View Article and Find Full Text PDFEur J Med Chem
May 2011
Center for Drug Discovery, College of Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China.
Tetrabenazine (TBZ) ((±)-1) and dihydrotetrabenazines (DHTBZ) are potent inhibitors of VMAT2. Herein, a practical chemical resolution of (±)-1 and stereoselective synthesis of all eight DHTBZ stereoisomers are described. The result of VMAT2 binding assay revealed that (+)-1 (Ki=4.
View Article and Find Full Text PDFJ Org Chem
May 2009
GE Global Research, One Research Circle, Niskayuna, New York 12309, USA.
The enantioselective synthesis of (+)-tetrabenazine (TBZ) and (+)-dihydrotetrabenazine (DTBZ), agents of significant interest for therapeutic and molecular imaging applications, has been completed in 21% (TBZ) and 16% (DTBZ) overall yield and in >97% ee from the starting dihydroisoquinoline. The synthesis utilizes Sodeoka's palladium-catalyzed asymmetric malonate addition to set the initial stereocenter followed by a number of diastereoselective transformations to incorporate the remaining asymmetric centers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!