Cystic fibrosis is caused by biallelic mutations in the gene encoding the CFTR conductor channel. The recent approval of the Elexacaftor-Tezacaftor-Ivacaftor (ETI) therapy has marked a milestone in the management of this disease, alleviating respiratory and digestive symptoms. However, this treatment has no impact on the increased susceptibility to bacterial infections. In this scenario, phage therapy, viruses capable of selectively targeting and killing bacteria, is an emerging option. In the exploration of phages as therapeutic agents, a crucial consideration is their interaction with host cells, especially the immune system. In a previous study, we established the anti-inflammatory effect of four selected phages using the cftr loss-of-function (LoF) zebrafish embryos. In this study, we dissected the interactions of one of them, i.e. the phage DEV, with two cell types crucial in the context of cystic fibrosis: bronchial epithelial cells carrying biallelic CFTR F508del mutation (CuFi-1) and macrophages chemically CFTR inhibited. DEV administration to both human cell types showed anti-inflammatory effects by decreasing the expression of pro-inflammatory cytokines. We further demonstrated that, when in contact with CuFi-1 cells, DEV is internalized and degraded through the lysosomal compartment. In zebrafish, we showed that DEV interacts with tissue-resident macrophages and, in turn, reduces neutrophil recruitment toward the inflammation site. This information sheds light on a previously undocumented aspect of phage therapy as a modulator of the immune response, inducing anti-inflammatory effects. This could be particularly noteworthy within the context of excessive inflammation observed in the airways of individuals with cystic fibrosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcf.2025.03.001 | DOI Listing |
Am J Respir Crit Care Med
March 2025
The University of Queensland, Children's Health Research Centre, Faculty of Medicine , Brisbane, Queensland, Australia.
Rationale: group bacteria (MABS) cause lethal infections in people with chronic lung diseases. Transmission mechanisms remain poorly understood; the detection of dominant circulating clones (DCCs) has suggested potential for person-to-person transmission.
Objectives: This study aimed to determine the role of drinking water in the transmission of MABS.
Cells
February 2025
College of Veterinary Medicine, Jilin University, Changchun 130062, China.
(1) Background: (CE) is an -induced worldwide parasitic zoonosis and is a recognized public health and socio-economic concern. The liver is the major target organ for CE's infective form protoscolex (PSCs), which causes serious liver damage and endangers the host's life. Reports show that PSC infection causes liver cell Fe metabolism disorder and abnormal deposition of Fe in liver cells and results in liver cell death.
View Article and Find Full Text PDFBackground: People with cystic fibrosis (pwCF) often have multifactorial peripheral muscle abnormalities attributed to, for example, malnutrition, steroid use, altered redox balance and, potentially, CF-specific intrinsic alterations. Malnutrition in CF now includes an increasing prevalence of overweight and obesity, particularly in those receiving CF transmembrane conductance regulator (CFTR) modulator therapy (CFTRm). We aimed to characterise peripheral muscle function and body composition in pwCF on Elexacaftor/Tezacaftor/Ivacaftor (ETI) CFTRm, compared to healthy controls.
View Article and Find Full Text PDFPediatr Pulmonol
March 2025
Department of Pediatrics, University of Wisconsin - Madison, Madison, Wisconsin, USA.
Background: Genetic modifiers have been identified that increase the risks of lung disease and other complications, such as diabetes in people with cystic fibrosis (CF). Variants in the hemochromatosis gene (HFE) were reported in a study of adults to be associated with worse lung disease.
Objectives: To ascertain the frequency of HFE variants, particularly C282Y (c.
Ther Adv Respir Dis
March 2025
Department of Medicine, National Jewish Health, Denver, CO, USA.
Nontuberculous mycobacteria (NTM) are ubiquitous, opportunistic pathogens that can cause lung disease in people with non-cystic fibrosis bronchiectasis (NCFB) and cystic fibrosis (CF). The incidence of NTM pulmonary infections and lung disease has continued to increase worldwide over the last decade among both groups. Notably, women with NCFB NTM pulmonary disease (NTM-PD) bear a disproportionate burden with NTM rates increasing in this population as well as having consistently higher incidence of NTM-PD compared to men.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!