X-linked Charcot-Marie-Tooth disease (CMT1X) is an inherited demyelinating neuropathy caused by loss-of-function mutations in the GJB1 gene, encoding the gap junction protein connexin32 (Cx32). Cx32 plays a critical role in Schwann cell function and myelin formation in the peripheral nervous system. We have developed a gene replacement therapeutic approach using a humanized AAVrh10 vector construct expressing GJB1 under the control of the Schwann cell-specific human myelin protein zero (MPZ) promoter. Lumbar intrathecal injection of increasing AAVrh10-hMPZ.GJB1 doses (low: 1 × 10 vg, standard: 2 × 10 vg and high: 1 × 10 vg) into Gjb1-null mice resulted in adequate, dose-dependent biodistribution of the vector in anterior lumbar roots and peripheral nerves, as well as high rates of Schwann cell-specific Cx32 expression in the standard- and high-dose groups. Both standard and high vector doses provided significant therapeutic benefit evaluated by behavioural, electrophysiological and morphological outcomes. Intrathecal delivery of AAVrh10-hMPZ.GJB1 induced the production of anti-AAVrh10 antibodies at 6 weeks post-injection. However, no histopathological or inflammatory changes were observed in neural or peripheral tissues, besides a mild increase in inflammatory cell numbers in sciatic nerves of mice treated with the high dose only. This study provides proof of concept for a clinically translatable AAVrh10-mediated gene therapy approach for CMT1X.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neurot.2025.e00568 | DOI Listing |
The development of targeted therapy for patients with multiple myeloma (MM) is hampered by the low frequency of actionable genetic abnormalities. Gain or amplification of chromosome 1q (1q+) is the most frequent arm-level copy number gain in patients with MM and is associated with higher risk of progression and death despite recent therapeutic advances. Thus, developing targeted therapy for MM patients with 1q+ stands to benefit a large portion of patients in need of more effective management.
View Article and Find Full Text PDFOncotarget
March 2025
Worldwide Innovative Network (WIN) Association - WIN Consortium, Chevilly-Larue, France.
The human genome project ushered in a genomic medicine era that was largely unimaginable three decades ago. Discoveries of druggable cancer drivers enabled biomarker-driven gene- and immune-targeted therapy and transformed cancer treatment. Minimizing treatment not expected to benefit, and toxicity-including financial and time-are important goals of modern oncology.
View Article and Find Full Text PDFSkin Therapy Lett
March 2025
Center for Clinical Studies, Webster, TX, USA.
Psoriatic arthritis (PsA) is a chronic, inflammatory disease with heterogeneous clinical features. The pathogenesis of PsA involves a complex interplay of genetic, immunologic, and environmental factors, leading to the activation of the immune system and subsequent inflammation. Over the past decade, the understanding of the immune mechanisms underlying PsA has advanced significantly, particularly regarding the role of the interleukin-23/T helper 17 pathway in the disease process.
View Article and Find Full Text PDFEuropace
March 2025
Clinical Cardiac Academic Group, Genetic and Cardiovascular Sciences Institute, City-St George's University of London, London, UK.
Atrial fibrillation (AF) is one of the most common cardiac diseases and a complicating comorbidity for multiple associated diseases. Many clinical decisions regarding AF are currently based on the binary recognition of AF being present or absent with the categorical appraisal of AF as continued or intermittent. Assessment of AF in clinical trials is largely limited to the time to (first) detection of an AF episode.
View Article and Find Full Text PDFSci Transl Med
March 2025
Clinical Neuroscience Research Center, Department of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, LA 70112, USA.
Traumatic brain injury (TBI) rapidly triggers proinflammatory activation of microglia, contributing to secondary brain damage post-TBI. Although the governing role of energy metabolism in shaping the inflammatory phenotype and function of immune cells has been increasingly recognized, the specific alterations in microglial bioenergetics post-TBI remain poorly understood. Itaconate, a metabolite produced by the enzyme aconitate decarboxylase 1 [IRG1; encoded by immune responsive gene 1 ()], is a pivotal metabolic regulator in immune cells, particularly in macrophages.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!