Sign-tracking, a conditioned response in which animals engage with reward-predictive cues, is a powerful behavioral tool for assessing Pavlovian motivation. In rodents, it is most frequently studied via automatic readouts, such as deflections of levers that act as reward cues. These readouts have been immensely helpful, but they may not be ideal for some tasks and paradigms. For example, animals can show a range of sign-tracking responses to a lever cue that do not result in lever deflection, and a reduction in deflections when animals are exposed to an omission contingency (i.e., when lever deflection cancels reward) hides the fact that the animals are still sign-tracking in other ways. Here, we analyzed the behavior of sign-tracking animals through both video monitoring and automatic task readouts in Pavlovian conditioning. This analysis aided in the classification of sign-tracking animals and revealed that lever deflections do not result from any identifiable pattern of sign-tracking. We then used omission and extinction procedures to unmask detailed behavior changes that can only be detected with video data. Automated readouts showed similar reductions of lever deflection in both task conditions. However, detailed behavioral analysis revealed quite distinct behavioral adaptations to these conditions with sign-tracking decreasing entirely during extinction while many sign-tracking behaviors (biting, sniffing, etc.) seemed to remain persistent during omission despite the decrease in deflections. Detailed behavioral analysis was thus critical for capturing sign-tracking maintenance, persistence, and loss.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1101/lm.054065.124 | DOI Listing |
Learn Mem
March 2025
Dartmouth College Department of Psychological and Brain Sciences, Hanover, New Hampshire 03755, USA.
Sign-tracking, a conditioned response in which animals engage with reward-predictive cues, is a powerful behavioral tool for assessing Pavlovian motivation. In rodents, it is most frequently studied via automatic readouts, such as deflections of levers that act as reward cues. These readouts have been immensely helpful, but they may not be ideal for some tasks and paradigms.
View Article and Find Full Text PDFNano Lett
March 2025
Department of Physics, Chalmers University of Technology, 412 96 Gothenburg, Sweden.
Contact-free rotation of microscopic objects in aqueous environments based on optical forces is a powerful concept in the development of light-driven microrobots, micromachines, torque transducers, and rheological sensors. Here, we demonstrate freely movable quasi-two-dimensional metasurface rotors with lateral dimensions up to 100 μm while still exhibiting controllable and steady rotation when submerged in water. The metarotors utilize photon recoil to produce strong optical torque by deflecting low-intensity laser light toward high angles via long lever arms, which amplify the creation of orbital angular momentum.
View Article and Find Full Text PDFBiomimetics (Basel)
May 2024
Chinese Aeronautical Establishment, Beijing 100012, China.
Can Urol Assoc J
April 2024
Division of Urology, Department of Surgery, St. Michael's Hospital, Toronto, ON, Canada.
Introduction: Hand/instrument motion-tracking in surgical simulation provides valuable data to improve psychomotor skills and can serve as a formative evaluation tool. Motion analysis has been well-studied in laparoscopic surgery; however, there are essentially no studies looking at motion-tracking for flexible ureteroscopy (fURS ), a common surgical procedure requiring hand dexterity and 3D spatial awareness. We aimed to design a synchronized motion-tracking and video capture system for fURS capable of collecting objective metrics for use in surgical skills training.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!