Identifying the mechanisms of ventilator/ventilation-induced lung injury requires an understanding of the pulmonary physiology involved in the mechanical properties of the lung along with the involvement of the inflammatory cascade. Accurately measuring parameters that represent physiologic lung stress and lung strain at the bedside can be clinically challenging. Although surrogates for lung stress and strain have been proposed, such as plateau pressure and driving pressure, these values only represent a static variable in the ventilator breath. It has been proposed that a single variable could be used as a unifying parameter to identify a threshold for the safe application of mechanical ventilation. The concept of "mechanical power" applies an energy load transfer designation to the ventilator settings and output of tidal volume, airway pressures, and flow. However, there is a potential disconnect between the use of "absolute" mechanical power and the variability of body weight throughout a mixed medical population. Using ideal body weight as an influential factor to express mechanical power can potentially allow for a more accurate depiction of energy applied to the lungs and a potentially reliable injurious mechanical ventilation threshold indicator.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/respcare.11815 | DOI Listing |
Adv Mater
March 2025
Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, P. R. China.
Anode-free lithium metal batteries are promising toward high-energy-density power sources with low-cost, but their practical applications are challenged by poor cycling stability and low rate capability. Herein, a shape change-free and lithium-free anode that well controls the reversible Li plating-stripping is reported, which is composed of a highly-ordered hollow ZnO matrix with a surface-coated lithium-phosphorus-oxynitride (LiPON) layer. The ZnO matrix supplies sufficient cavities and lithiophilic sites to facilitate uniform Li plating/stripping within the hollow cavity, while the LiPON layer maintains stable solid-electrolyte interphase from mechanical and electrochemical damage.
View Article and Find Full Text PDFNanomaterials (Basel)
February 2025
Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
Flexible devices are soft, lightweight, and portable, making them suitable for large-area applications. These features significantly expand the scope of electronic devices and demonstrate their unique value in various fields, including smart wearable devices, medical and health monitoring, human-computer interaction, and brain-computer interfaces. Protein materials, due to their unique molecular structure, biological properties, sustainability, self-assembly ability, and good biocompatibility, can be applied in electronic devices to significantly enhance the sensitivity, stability, mechanical strength, energy density, and conductivity of the devices.
View Article and Find Full Text PDFNanomaterials (Basel)
February 2025
School of Materials Science and Engineering, Chang'an University, Xi'an 710061, China.
This paper reports on the effect of the micro-morphological characteristics of stainless steel electrodes on vacuum breakdown properties under the action of a strong electric field generated by high-power electric pulses. Using chemical passivation modification and atomic layer deposition (ALD) technology, alumina composite films were prepared on the surface of the stainless steel electrodes to reshape the surface microstructure of the electrodes. The surface morphology features of the electrodes were characterized in detail.
View Article and Find Full Text PDFAdv Mater
March 2025
State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Science, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China.
As a classical low-cost technique, dip coating has not been used for printable electronics. Here, the study demonstrates large-area organic solar cells can be made by dip coating. The correlation is revealed among Van der Waals forces in precursor film, aggregation state of polymer, and fibrous orientation in active layer; the relationship is also expounded between fluid mechanics of the confined liquid in polymer scaffold and the continuity of the acceptor phase.
View Article and Find Full Text PDFAdv Mater
March 2025
Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA.
Lithium-ion batteries are indispensable power sources for a wide range of modern electronic devices. However, battery lifespan remains a critical limitation, directly affecting the sustainability and user experience. Conventional battery failure analysis in controlled lab settings may not capture the complex interactions and environmental factors encountered in real-world, in-device operating conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!