Obesity promotes adipose tissue inflammation and leads to impaired local but also systemic immune cell homeostasis. This chronic low-grade inflammation plays a significant role in the development of obesity-associated secondary diseases such as metabolic associated fatty liver disease or cancer. The spleen as the central organ of immune cell regulation is anatomically directly connected to the visceral adipose tissue and the liver via the portal vein circulation. However, the inter-organ crosstalk and linkage between obesity-induced systemic, hepatic and splenic immune cell dysregulation is not clearly outlined. In this study blood, spleen, and liver immune cells of non-obese wildtype vs. leptin deficient obese BTBR mice were isolated and analyzed in terms of leukocyte composition by flow cytometry. Significant differences between circulating, spleen- and liver-resident immune cell distribution revealed, that obesity-induced hepatic and systemic immune cell dysregulation is distinct from splenic immune cell reprogramming. Fatty liver inflammation was associated with splenic myeloid derived suppressor cell (MDSC) and natural killer T cell (NKT) enrichment whereas loss of hepatic T and B cells was not reflected by the splenic lymphocyte landscape. Correlation analysis confirmed a selective strong positive correlation between spleen and liver MDSC and NKT cell distribution indicating that the spleen-liver axis modulates obesity-induced immune dysregulation in a cell-specific manner. Similar results were observed in a diet-induced obesity mouse model. These data provide novel insights into the role of the spleen-liver axis in obesity-induced inflammation and foster the understanding of obesity-associated complications such as fatty liver disease and cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mce.2025.112518DOI Listing

Publication Analysis

Top Keywords

immune cell
24
fatty liver
16
spleen-liver axis
12
cell
10
obesity-induced systemic
8
liver inflammation
8
mdsc nkt
8
nkt cell
8
adipose tissue
8
immune
8

Similar Publications

Historical studies performed nearly a century ago using mouse skin models identified two key steps in cancer evolution: initiation, a likely mutational event, and promotion, driven by inflammation and cell proliferation. Initiation was proposed to be permanent, with promotion as the critical rate-limiting step for cancer development. Here, we carried out whole genome sequencing to demonstrate that initiated cells with thousands of mutagen-induced mutations can persist for long periods and are not removed by cell competition or by immune intervention, thus mimicking the persistence of cells with cancer driver mutations in normal human tissues.

View Article and Find Full Text PDF

Positive surgical margins following radical prostatectomy significantly contribute to tumor recurrence. While systemic chemotherapy demonstrates limited efficacy in this context, local chemotherapy drug delivery systems based on nanomaterials offer promising strategies to address this issue by modifying drug release kinetics and distribution, thereby enhancing antitumor effects while minimizing the toxicities associated with systemic chemotherapy. In this study, we utilized electrospun nanofibrous mats loaded with docetaxel for sustained drug delivery.

View Article and Find Full Text PDF

Adhesion-Assisted Antioxidant-Engineered Mesenchymal Stromal Cells for Enhanced Cardiac Repair in Myocardial Infarction.

ACS Nano

March 2025

School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, P. R. China.

Mesenchymal stromal cell (MSC) therapy holds great promise for treating myocardial infarction (MI). However, the inflammatory and reactive oxygen species (ROS)-rich environment in infarcted myocardium challenges MSC survival, limiting its therapeutic impact. In this study, we demonstrate that chemical modification of MSCs with anti-VCAM1 and polydopamine (PD) significantly enhances MSC survival and promotes cardiac repair.

View Article and Find Full Text PDF

Current influenza vaccines are not effective in conferring protection against antigenic variants and pandemics. To improve cross-protection of influenza vaccination, we developed a 5xM2e messenger RNA (mRNA) vaccine encoding the tandem repeat conserved ectodomain (M2e) of ion channel protein M2 derived from human, swine, and avian influenza A viruses. The lipid nanoparticle (LNP)-encapsulated 5xM2e mRNA vaccine was immunogenic, eliciting high levels of M2e-specific IgG antibodies, IFN-γ+ T cells, T follicular helper cells, germinal center phenotypic B cells, and plasma cells.

View Article and Find Full Text PDF

The CD2-depleting drug alefacept (LFA3-Ig) preserved beta cell function in new-onset type 1 diabetes (T1D) patients. The most promising biomarkers of response were late expansion of exhausted CD8 T cells and rare baseline inflammatory islet-reactive CD4 T cells, neither of which can be used to measure responses to drug in the weeks after treatment. Thus, we investigated whether early changes in T cell immunophenotypes could serve as biomarkers of drug activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!