Osteosarcoma (OS) is a malignant bone tumor that occurs commonly in adolescents or children, previous studies have shown its complex epigenetic signature. Histone methyltransferases KMT2D loss-of-function mutation is common in various types of human cancer. Here we revealed that KMT2D loss promotes malignant phenotypes in osteosarcoma. Based on the result of epigenetic inhibitor library screening we discovered that KDM5B inhibitors selectively killed KMT2D-deficient cells. Also, the knockdown of KDM5B by shRNA could reduce cell proliferation, migration and induce apoptosis in KMT2D-KO cells, while no similar appearance was observed in wild-type cells. Furthermore, we testified the efficiency and safety of KDM5B inhibition in patient-derived xenografts (PDX) mouse models driven by KMT2D low-expressing patients. These results demonstrated KDM5B as a synthetic lethal factor of KMT2D-loss mutation. Our findings suggest a novel therapeutic strategy for treating KMT2D mutated osteosarcoma by targeting KDM5B.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cbi.2025.111451 | DOI Listing |
Chem Biol Interact
March 2025
Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China.
Osteosarcoma (OS) is a malignant bone tumor that occurs commonly in adolescents or children, previous studies have shown its complex epigenetic signature. Histone methyltransferases KMT2D loss-of-function mutation is common in various types of human cancer. Here we revealed that KMT2D loss promotes malignant phenotypes in osteosarcoma.
View Article and Find Full Text PDFAging (Albany NY)
September 2021
Centro de Investigação Translacional em Oncologia (LIM24), Departamento de Radiologia e Oncologia, Faculdade de Medicina da Universidade de São Paulo and Instituto do Câncer do Estado de São Paulo, São Paulo, SP 01246-000, Brazil.
PLoS Comput Biol
October 2019
Department of Chemical and Biological Engineering, Colorado State University Fort Collins, Colorado, United States of America.
Advances in fluorescence microscopy have introduced new assays to quantify live-cell translation dynamics at single-RNA resolution. We introduce a detailed, yet efficient sequence-based stochastic model that generates realistic synthetic data for several such assays, including Fluorescence Correlation Spectroscopy (FCS), ribosome Run-Off Assays (ROA) after Harringtonine application, and Fluorescence Recovery After Photobleaching (FRAP). We simulate these experiments under multiple imaging conditions and for thousands of human genes, and we evaluate through simulations which experiments are most likely to provide accurate estimates of elongation kinetics.
View Article and Find Full Text PDFEnviron Pollut
December 2019
Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, 34116, Beyazit, Istanbul, Turkey. Electronic address:
Bisphenol A (BPA), as synthetic monomer used in the production of polycarbonate plastic and epoxy resins, has endocrine disruptor properties and high risk on human health. Epigenetic alterations could act an important role in BPA-induced toxicity, but its mechanism has not been fully understood. We investigated the effects of BPA on gene expression of chromatin modifying enzymes, promoter methylation of tumor suppressor genes and histone modifications in human prostate carcinoma cells (PC-3).
View Article and Find Full Text PDFJ Mol Biol
September 2018
Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, FIN-90014 Oulu, Finland. Electronic address:
Histone lysine demethylases (KDMs) are 2-oxoglutarate-dependent dioxygenases (2-OGDDs) that regulate gene expression by altering chromatin structure. Their dysregulation has been associated with many cancers. We set out to study the catalytic and inhibitory properties of human KDM4A, KDM4B, KDM5B, KDM6A and KDM6B, aiming in particular to reveal which of these enzymes are targeted by cancer-associated 2-oxoglutarate (2-OG) analogues.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!