Prior research has highlighted the significant roles of circulating retinol, retinol-binding protein 4 (RBP4), and apolipoprotein C (ApoC) in metabolic health. This study investigates the joint association of retinol and RBP4 with metabolic syndrome (MetS) and examines the potential mediating role of ApoCs in these relationships. This prospective study included 3009 and 2724 participants with baseline serum retinol and RBP4 data, respectively. Over a 9-year follow-up among 2621 participants, 1136, 127, 696, and 662 were categorized into MetS-free, recovered, incident MetS, and persistent MetS groups, respectively. Midway through the study, ApoC1-4 levels were measured in 2316 participants. Adjusted odds ratios (95% CIs) for the highest (vs. lowest) tertile of retinol and RBP4 levels were 3.63 (2.69-4.92) and 5.64 (4.05-7.92) for 9-year persistent MetS, respectively. The corresponding hazard ratios (95% CIs) were 1.67 (1.39-2.01) and 1.67(1.38, 2.03) for incident MetS, and 0.65(0.41-1.03) and 0.44 (0.28, 0.70) for recovered MetS (all P-trends < 0.05). A synergistic association of retinol and RBP4 with MetS risk was observed for persistent MetS. Higher levels of retinol or RBP4 were associated with increased concentrations of ApoC1-4, which were linked to a greater risk of incident and persistent MetS. A newly developed composite score (ApoCS), derived from ApoC1-4 levels, explained 30.5% and 24.5% of the association between retinol or RBP4 and MetS, with ApoC2 and ApoC3 contributing predominantly to this connection. Our study identified notable positive correlations between serum retinol and RBP4 levels and MetS progression, explained by increases in circulating ApoC2 and ApoC3 within a Chinese cohort.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jnutbio.2025.109892 | DOI Listing |
Biosens Bioelectron
March 2025
The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China. Electronic address:
Herein, we fabricate the graphene oxide-supported nanofilms coated by roughened nanoboxes (GO@AuAgRNB) for the ultrasensitive and simultaneous determination of multiple stroke subtype-specific biomarkers. Initially, Au-Ag roughened nanobox (AuAgRNB) with abundant coupling and tip hotspots is prepared by the partial surface passivation strategy. AuAgRNB is uniformly, densely and firmly assembled onto graphene oxide (GO) by metal-sulfur bonds, generating extensive high-density hotspots.
View Article and Find Full Text PDFFASEB J
March 2025
Department of Ophthalmology, University of Minnesota, Minneapolis, Minnesota, USA.
The distribution of stored dietary vitamin A/all-trans-retinol (ROL) from the liver throughout the body is critical for maintaining retinoid function in peripheral tissues and for generating visual pigments for photoreceptor cell function. ROL circulates in the blood bound to the retinol binding protein 4 (RBP4) as RBP4-ROL. Two membrane receptors, RBPR2 in the liver and other non-ocular tissues, and STRA6 in the eye are proposed to bind circulatory RBP4 and this mechanism facilitates the internalization of ROL.
View Article and Find Full Text PDFBiosens Bioelectron
February 2025
School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou, Guangdong, China; Chinese Medicine Guangdong Laboratory, Zhuhai, Guangdong, China. Electronic address:
Nanopore technology is a promising single-molecule sensing platform that can identify substances through the precise monitoring of changes in ion currents. However, protein detection in clinical samples using solid-state nanopores remains challenging due to their heterogeneously charged spherical structure, which results in signals with extremely low signal-to-noise ratios (SNR) and low capture rates that are difficult to analyze. In this study, we employed a double-antibody sandwich technique to specifically capture and amplify the target antigen, which significantly improves the SNR and effectively distinguishes the target signal from background interference.
View Article and Find Full Text PDFJ Nutr Biochem
March 2025
Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China;. Electronic address:
Prior research has highlighted the significant roles of circulating retinol, retinol-binding protein 4 (RBP4), and apolipoprotein C (ApoC) in metabolic health. This study investigates the joint association of retinol and RBP4 with metabolic syndrome (MetS) and examines the potential mediating role of ApoCs in these relationships. This prospective study included 3009 and 2724 participants with baseline serum retinol and RBP4 data, respectively.
View Article and Find Full Text PDFExp Mol Med
March 2025
Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea.
Retinol-binding protein 4 (RBP4), the sole specific carrier for retinol (vitamin A) in circulation, is highly expressed in liver and adipose tissues. Previous studies have demonstrated that RBP4 plays a role in cold-mediated adipose tissue browning and thermogenesis. However, the role of RBP4 in brown adipose tissue and its metabolic significance remain unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!