Bone taphonomy and diagenesis contribute to anthropological analysis in forensic investigations by attempting to reconstruct the relationship between human cadaveric remains and their postmortem depositional environment. The rare aquatic taphonomic experiments have been delivering conflicting results on the influence of time and the environment on the decay of bone and teeth, especially considering that the main diagenetic processes can lead to fragmentation, progressive dissolution or fossilization. The aim of this experimental, quantitative, randomized and controlled 2-year study was to analyse the taphonomy and diagenesis of submerged terrestrial mammalian bones to achieve a more accurate estimation of both the post-mortem interval (PMI) and the post-mortem submersion interval (PMSI) in the short term. Three parameters of bone diagenesis, the Oxford Histological Index (OHI), the total porosity and the collagen content of cortical bone were analysed by MicroCT Scan, bright-field Light Microscopy (Picrosirius Red stain), Scanning Electron Microscopy (SEM) and Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) on 75 sheep femurs and tibias placed in four distinct types of environment (natural saltwater, natural freshwater, an artificial seawater solution and exposed to the air) vs. non-exposed controls. LA-ICP-MS was soon discontinued because no measurable changes of the elemental profiles could be detected. Multivariate statistical analysis was applied to the collected data. The macroscopical preservation was consistently excellent (OHI=5). The total porosity and the degradation of collagen were greater underwater than in subaerial exposure, whereas demineralization zones and bioerosion tunnelling appeared after 12 months in the air-exposed samples only. Underwater, the continuous movement, the correlated abrasion by sand and sediment and the constant alkaline pH (≥ 8) can explain the progressive removal of the mineral component and the subsequent exposure of collagen to bioeroders and chemical hydrolysis. On land, the same process occurs at a slower rate on account of the seasonality of the water flow, however, the action of the more abundant and diversified species of bioeroding microorganisms appears more efficient. Despite some limitations, this study indicates that three parameters of bone diagenesis can predict the depositional environment of terrestrial mammalian bone characterized by a PMI and/or PMSI of at least 12 months.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.forsciint.2025.112416 | DOI Listing |
Forensic Sci Int
February 2025
Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, Western Australia 6150, Australia; The UWA Oceans Institute and School of Engineering, The University of Western Australia, Perth, Western Australia 6009, Australia.
Bone taphonomy and diagenesis contribute to anthropological analysis in forensic investigations by attempting to reconstruct the relationship between human cadaveric remains and their postmortem depositional environment. The rare aquatic taphonomic experiments have been delivering conflicting results on the influence of time and the environment on the decay of bone and teeth, especially considering that the main diagenetic processes can lead to fragmentation, progressive dissolution or fossilization. The aim of this experimental, quantitative, randomized and controlled 2-year study was to analyse the taphonomy and diagenesis of submerged terrestrial mammalian bones to achieve a more accurate estimation of both the post-mortem interval (PMI) and the post-mortem submersion interval (PMSI) in the short term.
View Article and Find Full Text PDFSci Rep
February 2025
Institut Català de Paleoecologia Humana i Evolució Social (IPHES-CERCA), Zona Educacional 4, Campus Sescelades URV (Edifici W3), 43007, Tarragona, Spain.
Bone diagenesis is a complex process that modifies bone components in response to burial conditions. These modifications help to understand deposit formation and classify fossils by stratigraphy. The combined techniques of X-ray diffraction with Rietveld refinement and infrared spectroscopy were used to study the bone diagenetic processes along the complete stratigraphic sequence of Galería site (Sierra de Atapuerca, Spain).
View Article and Find Full Text PDFPeerJ
January 2025
Florida Museum of Natural History, University of Florida, Gainesville, FL, United States of America.
The mechanisms that regulate minor and trace element biomineralization in the echinoid skeleton can be primarily controlled biologically (, by the organism and its vital effects) or by extrinsic environmental factors. Assessing the relative role of those controls is essential for understanding echinoid biomineralization, taphonomy, diagenesis, and their potential as geochemical archives. In this study, we (1) contrast geochemical signatures of specimens collected across multiple taxa and environmental settings to assess the effects of environmental and physiological factors on skeletal biomineralogy; and (2) analyze the nanomechanical properties of the echinoid skeleton to assess potential linkages between magnesium/calcium (Mg/Ca) ratios and skeletal nanohardness.
View Article and Find Full Text PDFPeerJ
January 2025
Department of Organismal Biology, Uppsala University, Uppsala, Sweden.
In this study, we attempt to illustrate fossil vertebrate dental tissue geochemistry and, by inference, its extent of diagenetic alteration, using quantitative, semi-quantitative and optical tools to evaluate bioapatite preservation. We present visual comparisons of elemental compositions in fish and plesiosaur dental remains ranging in age from Silurian to Cretaceous, based on a combination of micro-scale optical cathodoluminescence (CL) observations (optical images and scanning electron microscope) with minor, trace and rare earth element (REE) compositions (EDS, maps and REE profiles), as a tool for assessing diagenetic processes and biomineral preservation during fossilization of vertebrate dental apatite. Tissue-selective REE values have been obtained using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS), indicating areas of potential REE enrichment, combined with cathodoluminescence (CL) analysis.
View Article and Find Full Text PDFGeobiology
December 2024
Dipartimento di Scienze Della Terra, Università Degli Studi di Torino, Torino, Italy.
Due to their fast precipitation rate, sulfate evaporites represent excellent repositories of past life on Earth and potentially on other solid planets. Nevertheless, the preservation potential of biogenic remains can be compromised by extremely fast early diagenetic processes. The upper Miocene, gypsum-bearing sedimentary successions of the Mediterranean region, that formed ca.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!