Mitochondria play a crucial role in cellular processes such as growth, differentiation, and energy conversion. Dysfunctional mitochondria have been implicated in Alzheimer's disease (AD), making mitochondrial improvement a promising therapeutic approach. SIRT3, a mitochondrial deacetylase, modulates mitochondrial function by deacetylating associated proteins. This study aimed to enhance the activity of honokiol, a natural SIRT3 modulator, and improve mitochondrial function for neuroprotective activity, using mitochondria targeting strategy. We synthesized mitochondrial targeting peptide conjugates using XJB as a carrier and found that honokiol conjugates exhibited lower toxicity and higher activity on neuronal injury models in vitro and in vivo (Zebrafish model) at lower concentrations compared to honokiol. The neuroprotective mechanism may involve the activation of cellular autophagy-related pathways, promotion of SIRT3 pathway activation, and up-regulation of mitochondrial fusion-associated protein Mfn-1 expression under damaged conditions. This study offers a promising approach for developing anti-Alzheimer's disease (AD) natural product derivatives based on SIRT3 regulation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejmech.2025.117460 | DOI Listing |
J Immunol
January 2025
Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China.
The von Hippel-Lindau (VHL) tumor suppressor gene VHL is a classic tumor suppressor that has been identified in family members with clear cell renal cell carcinomas, central nervous system and retinal hemangioblastomas, phaeochromocytomas, and pancreatic neuroendocrine tumors. The well-defined function of VHL is to mediate proteasomal degradation of hydroxylated hypoxia-inducible factor α proteins, resulting in the downregulation of hypoxia-responsive gene expression. Previously, we reported that VHL inhibits antiviral signaling by targeting mitochondrial antiviral signaling protein (MAVS) for proteasomal degradation.
View Article and Find Full Text PDFJ Immunol
January 2025
Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA, United States.
Macrophages are critical to maintaining and restoring tissue homeostasis during inflammation. The lipid metabolic state of macrophages influences their function and polarization, which is crucial to the resolution of inflammation. The contribution of lipid synthesis to proinflammatory macrophage responses is well understood.
View Article and Find Full Text PDFJ Immunol
February 2025
Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, United States.
Mitochondrial antiviral-signaling protein (MAVS) is a key adapter protein required for inducing type I interferons (IFN-Is) and other antiviral effector molecules. The formation of MAVS aggregates on mitochondria is essential for its activation; however, the regulatory mitochondrial factor that mediates the aggregation process is unknown. Our recent work has identified the protein Aggregatin as a critical seeding factor for β-amyloid peptide aggregation.
View Article and Find Full Text PDFSci Transl Med
March 2025
Clinical Neuroscience Research Center, Department of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, LA 70112, USA.
Traumatic brain injury (TBI) rapidly triggers proinflammatory activation of microglia, contributing to secondary brain damage post-TBI. Although the governing role of energy metabolism in shaping the inflammatory phenotype and function of immune cells has been increasingly recognized, the specific alterations in microglial bioenergetics post-TBI remain poorly understood. Itaconate, a metabolite produced by the enzyme aconitate decarboxylase 1 [IRG1; encoded by immune responsive gene 1 ()], is a pivotal metabolic regulator in immune cells, particularly in macrophages.
View Article and Find Full Text PDFSci Adv
March 2025
Department of Radiation Oncology, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
Lung cancer exhibits altered metabolism, influencing its response to radiation. To investigate the metabolic regulation of radiation response, we conducted a comprehensive, metabolic-wide CRISPR-Cas9 loss-of-function screen using radiation as selection pressure in human non-small cell lung cancer. Lipoylation emerged as a key metabolic target for radiosensitization, with lipoyltransferase 1 (LIPT1) identified as a top hit.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!