Quorum sensing (QS) is widespread in the microbial world and mediates microbial relationships in communities. However, the existing knowledge is far from a full description of the complex communication-based microbial interactions in engineered ecosystems, i.e., wastewater treatment plants (WWTPs). Herein, we conducted a systematic analysis of the diversity and influential factors of the QS-related microflora through the collection of global 1186 activated sludge microbiome samples. We found that the richness of bacteria associated with the universal bacterial secondary messenger presented the highest in QS system, whereas the bacteria related to the degradation of N-Acyl-homoserine lactones occupied the main position in the quorum quenching system. The community turnover of QS microflora was found more likely to be dominated by the deterministic process, such as the dissolved oxygen and resource availability (the ratio of organic matter to microorganisms). Meanwhile, these QS microflora in turn have a profound impact on the functions of WWTPs, especially multilingual intelligencers involving various language systems, such as Nitrospira. By connecting the signal molecule synthesis and acceptance bacteria, we constructed a QS communication network, which can be a robust tool for initial investigation of signaling molecule-mediated microbial interactions. The above results were further integrated into an online access website, named Quorum Sensing Communication Network in Activated Sludge (QSCNAS) (https://www.qscnas.cn/), which allowed users to browse and capture possible QS-based interactions of target bacterium. This work contributes to the understanding of bacterial communication in WWTPs and provides a platform to help in developing potential regulation strategies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2025.123437 | DOI Listing |
This article deals with the observer-based control problem of networked periodic piecewise systems under encoding-decoding frameworks. An encoder with a uniform quantizer, which can compress and encrypt data, is provided to process the measurements from the sensors. The processed data is transmitted over the network to the decoder to recover the original data and then to the remote control station, thereby reducing the communication burden and ensuring data security.
View Article and Find Full Text PDFDiscov Oncol
March 2025
Department of Neurosurgery, The First Affiliated Hospital of Hainan Medical University, Haikou, 570102, China.
Background: Glioma, the most common primary cancer of the central nervous system, characterizes significant heterogeneity, presenting major challenges for therapeutic approaches and prognosis. In this study, the interactions between malignant glioma cells and macrophages/monocytes, as well as their influence on tumor progression and treatment responses, were explored using comprehensive single-cell RNA sequencing analysis.
Methods: RNA-seq data from the TCGA and CGGA databases were integrated and an in-depth analysis of glioma samples was performed using single-cell RNA sequencing, functional enrichment analysis, developmental trajectory analysis, cell-cell communication analysis, and gene regulatory network analysis.
Acta Neurochir (Wien)
March 2025
Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania "Luigi Vanvitelli", 80131, Naples, Italy.
Background: Inferior Fronto-Occipital Fascicle (IFOF) is a multitasking connection bundle essential for communication and high level mentalization. The aim of the present study was to quantitatively assess its radiological-anatomical-morphometric modifications according to different brain tumor histotype.
Methods: A retrospective multicentric Italian study was conducted.
Cells
March 2025
Program in Cell, Molecular, and Structural Biology, Miami University, Oxford, OH 45056, USA.
The crisis of metabolic and mental disorders continues to escalate worldwide. A growing body of research highlights the influence of tryptophan and its metabolites, such as serotonin, beyond their traditional roles in neural signaling. Serotonin acts as a key neurotransmitter within the brain-gut-microbiome axis, a critical bidirectional communication network affecting both metabolism and behavior.
View Article and Find Full Text PDFWomens Health (Lond)
March 2025
Center for Economic and Social Research, University of Southern California, Los Angeles, CA, USA.
Background: Retention of weight postpartum increases risk for long-term morbidity, including cardiometabolic disease. Although retained weight postpartum is a complex problem, interventions generally address individual diet and activity behaviors.
Objectives: We investigated the impact of social-network factors on postpartum health behaviors and weight.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!