The conventional preparation of layered double hydroxide (LDH) often limits its catalytic effectiveness in advanced oxidation processes due to agglomeration and inadequate exposure of active sites. In this work, we present a simplified synthesis approach that utilizes zeolitic imidazolate frameworks (ZIF)-67 (Co) as a sacrificial template to in situ fabricate hollow polyhedral CoFe-LDH (HP-LDH), aimed at enhancing the degradation of dye contaminants in aqueous systems. The unique porous and polyhedral structure of HP-LDH, derived from the template, facilitates contact efficiency between the substrate and active metal sites, acting as an effective nanoreactor. The comparative degradation experiments of Acid Red 27 (AR27) in peroxymonosulfate (PMS) revealed that the degradation efficiency of HP-LDH was nearly twice that of conventional flake LDH (F-LDH). Under optimal conditions, the HP-LDH/PMS system attained a removal rate of 95% in just 15 min. The degradation of the dye relies on the action of both radical and non-radical species, particularly O. Furthermore, the robust adaptability and versatility of HP-LDH/PMS to real water bodies, with a wide range of pH levels and coexisting inorganic anions, demonstrates its potential as a superior catalyst in wastewater treatment, offering a novel pathway for structural innovation of LDH materials in environmental applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2025.02.213DOI Listing

Publication Analysis

Top Keywords

layered double
8
double hydroxide
8
degradation dye
8
hollow layered
4
hydroxide nanoreactor
4
nanoreactor activated
4
activated peroxymonosulfate
4
peroxymonosulfate efficiently
4
efficiently degrade
4
degrade dye
4

Similar Publications

Hybrid multicompartment artificial architectures, inherited from different compartmental systems, possess separate microenvironments that can perform different functions. Herein, a hybrid compartmentalized architecture via hybridizing ferritin nanocage (Fn) with non-aqueous droplets using aminated-modified amphiphilic gelatin (AGEL) is proposed, which enables the generation of compartmentalized emulsions with hybrid multicompartments. The resulting compartmentalized emulsions are termed "hybrasome".

View Article and Find Full Text PDF

The pressing demand for both established and innovative technologies to expand laser wavelengths has rendered high-performance nonlinear optical (NLO) crystals with large optical anisotropy indispensable. Here, centrosymmetric [SHC(NH)]CdBr (1) and pseudo-2D layered [SC(NH)]CdBr (2), as well as pseudo-3D noncentrosymmetric [SC(NH)]CdCl (3) are successfully synthesized through the introduction of π-conjugated SC(NH) groups. Compared to ionic compound 1 containing full-halogen coordination tetrahedra, covalent compounds 2 and 3 featuring novel polar [SC(NH)]CdX (X = Br, Cl) tetrahedral units demonstrate enhanced bandgaps (>4 eV) and birefringences (>0.

View Article and Find Full Text PDF

Phosphorus (P) is vital for plant growth, but its agricultural use is limited by soil fixation and environmental loss. This study developed an organic ligand-responsive phosphate release system by hybridizing magnesium-iron-layered double hydroxides (Mg-Fe LDH) with pectin from apple and citrus (pectin-A/C). Structural properties and phosphate (PO) release of LDH hybrids with different concentrations of metal precursors (0.

View Article and Find Full Text PDF

Design of a Soft Robotic Artificial Cardiac Wall.

Artif Organs

March 2025

The BioRobotics Insitute and Department of Excellence of Robotics & AI, Scuola Superiore Sant'Anna, Pontedera, Italy.

Background: In cardiovascular engineering, the recent introduction of soft robotic technologies sheds new light on the future of implantable cardiac devices, enabling the replication of complex bioinspired architectures and motions. To support human heart function, assistive devices and total artificial hearts have been developed. However, the system's functionality, hemocompatibility, and overall implantability are still open challenges.

View Article and Find Full Text PDF

Artificial synapses, basic units of neuromorphic hardware, have been studied to emulate synaptic dynamics, which are beneficial for realizing high-quality neural networks. Currently, two-dimensional (2D) material heterojunction structures are widely used in the study of artificial synapses; however, their dynamic weight-updating characteristics are restricted owing to their high nonlinearity and low symmetricity. In this study, we treated h-BN with oxygen plasma to form a charge-trapping layer (CTL), and we prepared 2D ReS/CTL/h-BN heterojunction synapses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!