Optimizing ionomer distribution for constructing efficient Pt/ionomer interfaces: Research on improving the performance of low-platinum-loading hydrogen fuel cells.

J Colloid Interface Sci

State Key Laboratory of Space Power-Sources, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, MOE Engineering Research Center for Electrochemical Energy Storage and Carbon Neutrality in Cold Regions, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001 Heilongjiang Province, China; Shenzhen Key Laboratory of Special Functional Materials, Shenzhen Engineering Laboratory for Advance Technology of Ceramics, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China. Electronic address:

Published: February 2025

Reducing the platinum content within membrane electrode assemblies (MEAs) of proton exchange membrane fuel cells (PEMFCs) is a strategic approach to decrease their overall costs. Nevertheless, this approach can result in significant voltage losses which are primarily attributed to the increased impedance of oxygen through the Pt-ionomer interface. In this study, the local oxygen mass transfer resistance (R) is effectively reduced by doping sulfur onto the carbon supports. The surface hydrophilicity of the carbon supports is enhanced after sulfur doping, which intensifies the interaction between the polar side chains of the ionomers and the carbon supports. This results in a more uniform distribution of the ionomers within catalyst layers, thus enabling oxygen diffusion to the Pt surface without passing through a dense ionomer layer. Moreover, the uniform distribution of ionomers reduces the adsorption of sulfonic acid groups on Pt, thereby mitigating their toxic effect. In low Pt-loaded MEAs, i.e., 0.03 and 0.1 mg·cm for anode and cathode, respectively, the sulfur-doped Pt/S-KB-1.0 catalyst demonstrates an effective Pt utilization of 0.098 g·kW on the cathode side, and a 24.8 % decrease of R compared to the undoped sample. Additionally, it exhibits favorable low-humidity adaptability and superior durability performance.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2025.02.205DOI Listing

Publication Analysis

Top Keywords

carbon supports
12
fuel cells
8
uniform distribution
8
distribution ionomers
8
optimizing ionomer
4
ionomer distribution
4
distribution constructing
4
constructing efficient
4
efficient pt/ionomer
4
pt/ionomer interfaces
4

Similar Publications

The links between soil and water pollution and cardiovascular disease.

Atherosclerosis

March 2025

University Medical Center Mainz, Department of Cardiology at the Johannes Gutenberg University, Germany; German Cardiovascular Research Center (DZHK), Partner Site Rhine Main, Mainz, Germany.

Soil and water pollution represent significant threats to global health, ecosystems, and biodiversity. Healthy soils underpin terrestrial ecosystems, supporting food production, biodiversity, water retention, and carbon sequestration. However, soil degradation jeopardizes the health of 3.

View Article and Find Full Text PDF

Impacts of continuous irrigation using treated municipal wastewater on rice-soil systems: A three-year study.

Sci Total Environ

March 2025

Faculty of Agriculture, Yamagata University, 1-23 Wakaba-machi, Tsuruoka, Yamagata 997-8555, Japan. Electronic address:

Research on the effects of rice fertigation using treated municipal wastewater (TWW) as the sole source of nutrients and irrigation water remains limited. This study examined the impact of continuous TWW irrigation on rice-soil systems across three years (2021-2023), focusing on soil health, plant growth and yield, and the mineral and toxic element composition of rice grains. Forage rice cultivation using TWW fertigation (test field) was compared with conventional cultivation using chemical fertilisers and canal water (control field).

View Article and Find Full Text PDF

Quercetin-derived carbon dots promote proliferation and migration of Schwann cells and enhance neurite outgrowth.

Colloids Surf B Biointerfaces

March 2025

Department of Medical and Translational Biology, Umeå University, Umeå SE-901 87, Sweden. Electronic address:

Quercetin, a flavonoid known for its antioxidant properties, has recently garnered attention as a potential neuroprotective agent for treatment of the injured nervous system. The repair of peripheral nerve injuries hinges on the proliferation and migration of Schwann cells, which play a crucial role in supporting axonal growth and myelination. In this study we synthesized Quercetin-derived carbon dots (QCDs) and investigated their effects on cultured Schwann cells and the NG108-15 cell line.

View Article and Find Full Text PDF

An efficient approach to probe bioactive components of herbal patches by 2D-carbon microfiber fractionation and multi-chamber membrane separation electrophoresis: Spatholobus suberectus Dunn as a case.

J Pharm Biomed Anal

March 2025

College of Pharmacy, Yanbian University, Yanji 133002, PR China; Department of Chemistry, Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University, Yanji 133002, PR China. Electronic address:

Herbal patches are widely used in clinics for their good curative effects. However, due to the complexity of plant matrices and the extremely low content of transdermal components, the individuation of their effective bioactive compounds represents a challenge: there is then a great need for an efficient method to reveal the bioactive ingredients of herbal patches. In this work, a wide-screening approach is proposed to an individuation of transdermal bioactive components in herbal patches obtained by Spatholobus suberectus Dunn (S.

View Article and Find Full Text PDF

Effects of nitrification inhibitors DCD and DMPP on maturity, NO and NH emissions during manure composting.

J Environ Manage

March 2025

Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing, China.

In order to reduce NO emissions during composting, the effects of different nitrification inhibitors (NI), dicyandiamide (DCD) and 3,4-dimethylpyrazole phosphate (DMPP), on compost maturity, NO, and NH emissions were studied under continuous incremental addition. This study used pig manure and corn straw as composting materials, based on the total nitrogen (TN) content of the initial mixture, two treatments were set: DCD (2.5% in the early phase and 5.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!