Natural medicinal compounds (NMCs) exhibit medicinal properties and show particular promise in healing bone defects caused by osteosarcoma or fractures. Gingerol (GE) sourced from ginger root (Zingiber officinale) extract, possesses antibacterial, osteogenic, analgesic, antitumorigenic, and anti-inflammatory properties. We encapsulate gingerol within lipid nanoparticles (LNPs) to promote these beneficial properties and provide enhanced stability. These GE LNPs paired with 3D-printed tricalcium phosphate allow for patient-specific drug delivery at the wound site. This system reveals a 16 % and 12 % reduction in burst release of the GE in pH 5.0 and 7.4, respectively. GE LNPs exhibit a 1.3-fold increase in osteoblast viability and 3.3-fold higher cytotoxicity towards osteosarcoma cells compared to untreated scaffolds. Treated scaffolds also show a 4.4-fold reduction in the gram-positive Staphylococcus aureus through cell wall dilation and rupture. Integrating GE LNPs into 3D-printed scaffolds reveals a novel strategy to expedite bone repair and may hold potential in future bone tissue engineering applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bioadv.2025.214194 | DOI Listing |
J Immunol
January 2025
Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, United States.
Current influenza vaccines are not effective in conferring protection against antigenic variants and pandemics. To improve cross-protection of influenza vaccination, we developed a 5xM2e messenger RNA (mRNA) vaccine encoding the tandem repeat conserved ectodomain (M2e) of ion channel protein M2 derived from human, swine, and avian influenza A viruses. The lipid nanoparticle (LNP)-encapsulated 5xM2e mRNA vaccine was immunogenic, eliciting high levels of M2e-specific IgG antibodies, IFN-γ+ T cells, T follicular helper cells, germinal center phenotypic B cells, and plasma cells.
View Article and Find Full Text PDFJ Immunol
March 2025
Department of Immunology, Faculty of Life Sciences, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.
Extracellular vesicles (EVs), including exosomes, mediate intercellular communication by transporting functional molecules between donor cells and recipient cells, thereby regulating biological processes, such as immune responses. miR-451a, an immune regulatory microRNA, is highly abundant in circulating EVs; however, its precise physiological significance remains to be fully elucidated. Here, we demonstrate that miR-451a deficiency exacerbates delayed-type hypersensitivity (DTH) in mice.
View Article and Find Full Text PDFRSC Chem Biol
February 2025
Pingshan Translational Medicine Center, Shenzhen Bay Laboratory Shenzhen 518118 China
mRNA-based therapies have broad applications in various disease treatments and have been applied in protein replacement therapy, gene editing, and vaccine development. Numerous research studies have been carried out aiming to increase the stability of mRNA, improve its translational efficiency, and reduce its immunogenicity. However, given mRNA's large molecular size and strong electronegativity, the safety and efficient delivery of mRNA into the target cells remains the critical rate-limiting step in current mRNA drug development.
View Article and Find Full Text PDFRSC Adv
March 2025
Institute of Pharmaceutical Research, GLA University Mathura India.
Onychomycosis significantly impacts approximately 20% of the global population. The physical barriers of the nail structure make fungal infections a persistent therapeutic challenge. Traditional approaches, including topical and oral antifungal agents, have limitations such as toxicities, low nail permeability, adverse effects, and high recurrence rates.
View Article and Find Full Text PDFCurr Gene Ther
March 2025
Department of Pharmaceutical Sciences, Indira Gandhi University, Meerpur, Rewari - 123401, India.
The advent of CRISPR/Cas gene-editing technology has revolutionized molecular biology, offering unprecedented precision and potential in treating genetic disorders, cancers, and other complex diseases. However, for CRISPR/Cas to be truly effective in clinical settings, one of the most significant challenges lies in the delivery of the CRISPR components, including guide RNA (gRNA) and Cas protein, into specific cells or tissues. Safe, targeted, and efficient delivery remains a critical bottleneck.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!