A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

10-Hydroxydec-2-enoic acid reduces vascular smooth muscle cell inflammation via interacting with Toll-like receptor 4. | LitMetric

Background: 10-Hydroxydec-2-enoic acid (10-HDA), a unique and marker compound in royal jelly, has a wide range of bio-activities. However, its role in regulating inflammation of vascular smooth muscle cell (VSMC), which is essential to a set of vascular diseases, is still unknown.

Purpose: Our study aimed to investigate whether 10-HDA exerts effect on VSMC inflammation via interacting with toll-like receptor 4 (TLR4), a pivotal inflammatory initiator.

Methods: A package of proteins, which might participate in TLR4-mediated signaling, influenced by 10-HDA were analyzed in mouse VSMCs with Angiotensin Ⅱ(Ang Ⅱ) or lipopolysaccharide (LPS) stimulation. Accordingly, pro- or anti-inflammatory cytokines, reactive oxygen species (ROS), and anti-oxidants that are closely relevant to inflammatory process were determined. The possible mode for 10-HDA interacting with TLR4 was also characterized. Moreover, involvement of a key miRNA in 10-HDA regulating VSMC inflammation was identified.

Results: In the presence of Ang Ⅱ, 10-HDA inhibited the TLR4 expression in a dose-dependent manner. In such occasion, 10-HDA hindered the up-regulation of specificity protein 1 (SP1) and serine/threonine-protein phosphatase 6 catalytic subunit (PPP6C), the phosphorylation of extracellular signal-regulated kinase 1/2, TGF-β-activated kinase 1, and nuclear factor-κB p56, as well as the enhancement of myeloid differentiation primary response gene 88. Apart from SP1 and PPP6C, the level change of these proteins by 10-HDA was similar with LPS stimulation. The effect might be resulted from 10-HDA blocking TLR4 through multiple atomic interactions. 10-HDA mitigated the increase of pro-inflammatory cytokines tumor necrosis factor-alpha, interleukin-2 (IL-2), and IL-6, as well as increased the anti-inflammatory cytokine IL-10, in the Ang Ⅱ- or LPS-induced VSMCs. Correspondingly, the level of ROS was attenuated and the anti-oxidants such as glutathione and superoxide dismutase were fortified. The data indicated the anti-inflammatory potential of 10-HDA in VSMCs, which was associated with 10-HDA's capability of relieving oxidative stress. Additionally, the expression of miR-17-5p was saved by 10-HDA from Ang Ⅱ- or LPS-treated VSMCs, which might be relevant to SP1 and PPP6C targeting.

Conclusion: The present work of 10-HDA, for the first time, revealed its ability to alleviate VSMC inflammation by targeting TLR4 and therefore modulate the downstream inflammatory participants. Our data will cast light on the utilization of 10-HDA in VSMC inflammation-related vascular disorders.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.phymed.2025.156534DOI Listing

Publication Analysis

Top Keywords

10-hda
14
vsmc inflammation
12
10-hydroxydec-2-enoic acid
8
vascular smooth
8
smooth muscle
8
muscle cell
8
inflammation interacting
8
interacting toll-like
8
toll-like receptor
8
lps stimulation
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!