Beyond sialylation: Exploring the multifaceted role of GNE in GNE myopathy.

Mol Genet Metab

Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; UCIBIO-Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; CDG & Allies-Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal. Electronic address:

Published: March 2025

Defects in sialic acid metabolism disrupt the sialylation of glycoproteins and glycolipids, contributing to a spectrum of diseases, including GNE myopathy (GNEM). This rare disorder is caused by mutations in the GNE gene that encodes for a bifunctional enzyme required for sialic acid biosynthesis, resulting in progressive muscle atrophy and weakness. There is no approved treatment for GNEM, and the number of affected individuals is underestimated. Although hyposialylation is considered the hallmark of GNEM, evidence showed lack of consistent correlation with GNEM severity and unveiled additional roles of GNE that contribute to the onset and/or progression of GNEM. Recent findings indicate that these mechanisms extend beyond glycosylation, encompassing cytoskeletal dynamics, oxidative stress, and muscle regeneration pathways. Understanding how GNE mutations result in a cascade of cellular and molecular dysregulations is crucial for developing targeted therapies aimed at improving the quality of life of patients. This review comprehensively examines GNEM's pathophysiology, clinical presentation, and therapeutic strategies, highlighting key findings on non-canonical GNE functions that account to GNEM clinical outcomes and emerging therapeutic targets. We propose future research directions to explore alternative target pathways that can ultimately support clinical development.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ymgme.2025.109075DOI Listing

Publication Analysis

Top Keywords

gne myopathy
8
sialic acid
8
gne
7
gnem
6
sialylation exploring
4
exploring multifaceted
4
multifaceted role
4
role gne
4
gne gne
4
myopathy defects
4

Similar Publications

Beyond sialylation: Exploring the multifaceted role of GNE in GNE myopathy.

Mol Genet Metab

March 2025

Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; UCIBIO-Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; CDG & Allies-Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal. Electronic address:

Defects in sialic acid metabolism disrupt the sialylation of glycoproteins and glycolipids, contributing to a spectrum of diseases, including GNE myopathy (GNEM). This rare disorder is caused by mutations in the GNE gene that encodes for a bifunctional enzyme required for sialic acid biosynthesis, resulting in progressive muscle atrophy and weakness. There is no approved treatment for GNEM, and the number of affected individuals is underestimated.

View Article and Find Full Text PDF

Introduction: Titinopathies are heterogenous group of disorders affecting the skeletal and cardiac muscles variably and caused by Titin ( gene mutations located in Chromosome 2. The manifestations extend from congenital to adult-onset myopathies. Here we describe the phenotype-genotype heterogeneity of patients with myopathy/muscular dystrophy associated with TTN variants in an Indian cohort.

View Article and Find Full Text PDF

GNE myopathy is an autosomal recessive hereditary muscle disorder that has the following clinical characteristics: develops in early adulthood, gradually progresses from the distal muscles, and is relatively sparing of quadriceps until the advanced stages of the disease. With further progression, patients become non-ambulatory and need a wheelchair. There is growing concern about extra-muscular presentations such as thrombocytopenia, respiratory dysfunction, and sleep apnea syndrome.

View Article and Find Full Text PDF

Clinical features, mutation spectrum and factors related to reaching molecular diagnosis in a cohort of patients with distal myopathies.

J Neurol

January 2025

Neuromuscular Diseases Unit, Neurology Department, Hospital Universitari I Politècnic La Fe, Neuromuscular Reference Centre, ERN-EURO-NMD, Avenida de Fernando Abril Martorell 106, 46026, Valencia, Spain.

Background: Distal myopathies (MPDs) are heterogeneous diseases of complex diagnosis whose prevalence and distribution in specific populations are unknown.

Methods: Demographic, clinical, genetic, neurophysiological, histopathological and muscle imaging characteristics of a MPDs cohort from a neuromuscular reference center were analyzed to study their epidemiology, features, genetic distribution and factors related to diagnosis.

Results: The series included 219 patients (61% were men, 94% Spanish and 41% sporadic cases).

View Article and Find Full Text PDF

[Aceneuraminic acid for distal myopathy].

Nihon Yakurigaku Zasshi

January 2025

Department of Neurology, Tohoku University School of Medicine.

Distal myopathy with rimmed vacuoles (GNE myopathy) is an incurable disease that develops after the late teens, progresses slowly, and has no effective treatment. It is inherited in an autosomal recessive manner, and the number of patients in Japan is estimated to be around 400. The causative gene was revealed to be GNE, the rate-limiting enzyme in the sialic acid biosynthesis pathway, and non-clinical studies demonstrated the effectiveness of sialic acid.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!