Super-resolution imaging methods that combine interferometric axial (z) analysis with single-molecule localization microscopy (iSMLM) have achieved ultrahigh 3D precision and contributed to the elucidation of important biological ultrastructures. However, their dependence on imaging multiple phase-shifted output channels necessitates complex instrumentation and operation. To solve this problem, we develop an interferometric superresolution microscope capable of optimal direct axial nanoscopy, termed VILM (Vortex Interference Localization Microscopy). Using a pair of vortex phase plates with opposite orientation for each dual-opposed objective lens, the detection point-spread functions (PSFs) adopt a bilobed profile whose rotation encodes the axial position. Thus, direct 3D single-molecule coordinate determination can be achieved with a single output image. By reducing the number of output channels to as few as one and utilizing a simple 50∶50 beam splitter, the imaging system is significantly streamlined, while the optimal iSMLM imaging performance is retained, with axial precision 2 times better than the lateral. The capability of VILM is demonstrated by resolving the architecture of microtubules and probing the organization of tyrosine-phosphorylated signaling proteins in integrin-based cell adhesions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.134.073802 | DOI Listing |
Phys Rev Lett
February 2025
Mechanobiology Institute, Singapore 117411, Republic of Singapore.
Super-resolution imaging methods that combine interferometric axial (z) analysis with single-molecule localization microscopy (iSMLM) have achieved ultrahigh 3D precision and contributed to the elucidation of important biological ultrastructures. However, their dependence on imaging multiple phase-shifted output channels necessitates complex instrumentation and operation. To solve this problem, we develop an interferometric superresolution microscope capable of optimal direct axial nanoscopy, termed VILM (Vortex Interference Localization Microscopy).
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
February 2025
Holographic acoustic tweezers have various biomedical applications due to their ability to flexibly and rapidly synthesize acoustic fields for manipulating single or multiple particles. Existing multi-particle manipulation techniques are usually realized by precisely designing the incident wave's phase distribution to synthesize a complex and steady-state acoustic field containing multiple acoustic trapping beams. However, interference effects between multiple beams tend to produce artifacts that trap particles in unwanted positions, limiting accuracy and the number of manipulated particles.
View Article and Find Full Text PDFJ Opt Soc Am A Opt Image Sci Vis
December 2024
Using orbital angular momentum (OAM) encoding for signal transmission enables optical communication in the spatial domain. However, during the transmission process of vortex optical communication, environmental factors such as atmospheric turbulence and haze cause scattering effects, resulting in the degradation of signal quality and increasing the complexity of decoding. Our goal is to design a framework that can recover the encoded signal from the speckle field, reducing the effects of scattering.
View Article and Find Full Text PDFThis Letter introduces a method for identifying the fast axis and phase retardation of wave plates by means of polarization common-path vortex interferometry. The technique utilizes a composite polarized vortex beam interacting with the wave plate under test. By analyzing the azimuth angle of the dark fringe in the interference pattern, the wave plate's characteristics are accurately extracted.
View Article and Find Full Text PDFPhys Rev Lett
November 2024
International Center for Quantum Materials, Peking University, Beijing 100871, China.
In this Letter, we propose a mechanism of an emergent quasilocalized phase in chiral symmetry classes, where the wave function along a spatial direction with weak topology is delocalized but exponentially localized along the other directions. The Anderson transition in two-dimensional chiral symmetry classes is induced by the proliferation of vortex-antivortex pairs of a U(1) phase degree of freedom, while the weak topology endows the pair with a Berry phase. We argue that the Berry phase induces spatial polarizations of the pairs along the topological direction through the quantum interference effect, and the proliferation of the polarized vortex pairs results in the quasilocalized phase.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!