Feshbach resonances play a vital role in the success of cold atoms investigating strongly correlated physics. The recent observation of their solid-state analog in the scattering of holes and intralayer excitons in transition metal dichalcogenides [I. Schwartz et al., Science 374, 336 (2021)SCIEAS0036-807510.1126/science.abj3831] holds compelling promise for bringing fully controllable interactions to the field of semiconductors. Here, we demonstrate how tunneling-induced layer hybridization can lead to the emergence of two distinct classes of Feshbach resonances in atomically thin semiconductors. Based on microscopic scattering theory we show that these two types of Feshbach resonances allow us to tune interactions between electrons and both short-lived intralayer, as well as long-lived interlayer excitons. We predict the exciton-electron scattering phase shift from first principles and show that the exciton-electron coupling is fully tunable from strong to vanishing interactions. The tunability of interactions opens the avenue to explore Bose-Fermi mixtures in solid-state systems in regimes that were previously only accessible in cold atom experiments.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.134.076903DOI Listing

Publication Analysis

Top Keywords

feshbach resonances
16
feshbach
4
resonances exciton-charge-carrier
4
scattering
4
exciton-charge-carrier scattering
4
scattering semiconductor
4
semiconductor bilayers
4
bilayers feshbach
4
resonances play
4
play vital
4

Similar Publications

Feshbach resonances play a vital role in the success of cold atoms investigating strongly correlated physics. The recent observation of their solid-state analog in the scattering of holes and intralayer excitons in transition metal dichalcogenides [I. Schwartz et al.

View Article and Find Full Text PDF

Tunable scattering resonances are crucial for controlling atomic and molecular systems. However, their use has so far been limited to ultracold temperatures. These conditions remain hard to achieve for most hybrid trapped ion-atom systems-a prospective platform for quantum technologies and fundamental research.

View Article and Find Full Text PDF

The cyano-cyclopentadiene molecule (CN-CH) has attracted significant interest since its detection in the interstellar medium, but the radical (CN-CH) and anionic (CN-CH) forms of cyano-cyclopentadiene have not been studied. The cyano-cyclopentadienyl radical (CN-Cp) has a strong dipole moment, rendering it an ideal system for vibrational and rotational spectroscopy. We report an investigation of the cryogenically cooled cyano-cyclopentadienide anion (CN-Cp) using high-resolution photoelectron imaging, photodetachment spectroscopy, and resonant photoelectron imaging.

View Article and Find Full Text PDF

Resonant Auger Decay in Benzene.

J Phys Chem A

January 2025

Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States.

We present ab initio calculations of the resonant Auger spectrum of benzene. In the resonant process, Auger decay ensues following the excitation of a core-level electron to a virtual orbital. Hence, resonant Auger decay gives rise to higher-energy Auger electrons compared to nonresonant decay.

View Article and Find Full Text PDF

Feshbach hypothesis of high-Tc superconductivity in cuprates.

Nat Commun

January 2025

Department of Physics and Arnold Sommerfeld Center for Theoretical Physics (ASC), Ludwig-Maximilians-Universität München, München, Germany.

Article Synopsis
  • The study explores strong pairing mechanisms in many-body physics, particularly through a Feshbach perspective, focusing on interactions in Fermi-Hubbard models related to doped Mott insulators.
  • It theorizes the presence of a low-energy excited state of two holes that facilitates near-resonant interactions, which aligns with observed behaviors in cuprate materials.
  • The authors propose experimental methods like cARPES and pair-tunneling measurements to test their theories, suggesting a link between emergent Feshbach resonances and superconductivity in antiferromagnetic Mott insulators.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!