Trapped atomic ions constitute one of the leading physical platforms for building the quantum repeater nodes to realize large-scale quantum networks. In a long-distance trapped-ion quantum network, it is essential to have crosstalk-free dual-type qubits: one type, called the communication qubit, to establish an entangling interface with telecom photons; and the other type, called the memory qubit, to store quantum information immune from photon scattering under entangling attempts. Here, we report the first experimental implementation of a telecom-compatible and crosstalk-free quantum network node based on two trapped ^{40}Ca^{+} ions. The memory qubit is encoded on a long-lived metastable level to avoid crosstalk with the communication qubit encoded in another subspace of the same ion species, and a quantum wavelength conversion module is employed to generate heralded ion-photon entanglement over a 12 km fiber. Our work therefore constitutes an important step toward the realization of quantum repeaters and long-distance quantum networks.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.134.070801 | DOI Listing |
QuANTUM-First (NCT02668653) was a randomized phase 3 trial in newly diagnosed FLT3-ITDQpositive acute myeloid leukemia (AML) patients treated with quizartinib or placebo plus standard induction and consolidation chemotherapy and/or allogeneic hematopoietic cell transplantation (allo-HCT), followed by single-agent maintenance therapy. We evaluated the impact of allo-HCT performed in first complete remission (CR1) or composite CR1 (CRc1) on overall survival (OS), considering treatment randomization. Post-hoc extended Cox regression multivariable analyses were conducted in patients who achieved CR/CRc by the end of induction, including allo-HCT in CR1/CRc1 as a time-dependent variable to identify prognostic and predictive factors for OS.
View Article and Find Full Text PDFAdv Mater
March 2025
State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871, China.
AlGaN-based ultraviolet (UV) light-emitting diodes (LEDs) experience a notable reduction in efficiency within the 280-330 nm wavelength range, known as the "UVB gap". Given the extensive applications of UV LEDs in this wavelength range, it is imperative to bridge this efficiency gap. In this study, a strategy facilitated by the presence of residual Al adatoms is introduced to simultaneously improve the integration of Ga-adatoms and the migration of Al/Ga-adatoms during the growth of low-Al-composition AlGaN quantum wells (QWs) even at high temperatures comparable to those used for high-Al-composition AlGaN quantum barriers.
View Article and Find Full Text PDFAdv Mater
March 2025
Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Republic of Singapore.
Tuning transition metal spin states potentially offers a powerful means to control electrocatalyst activity. However, implementing such a strategy in electrochemical CO reduction (COR) is challenging since rational design rules have yet to be elucidated. Here we show how the addition of P dopants to a ferromagnetic element (Fe, Co, and Ni) single-atom catalyst (SAC) can shift its spin state.
View Article and Find Full Text PDFAdv Mater
March 2025
Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg, CNRS, UMR 7504, Strasbourg, F-67000, France.
2D van der Waals materials and their heterostructures are a fantastic playground to explore emergent phenomena arising from electronic quantum hybridization effects. In the last decade, the spin-dependant hybridization effect pushed this frontier further introducing the magnetic proximity effect as a promising tool for spintronic applications. Here the uncharted proximity-controlled magnetoelectric effect in EuO/graphene heterostructure is unveiled.
View Article and Find Full Text PDFBeilstein J Org Chem
March 2025
Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA.
A new deep-blue emitting and highly fluorescent anthracene (ANTH) derivative containing perfluorobenzyl (Bn) groups, 9,10-ANTH(Bn), was synthesized in a single step reaction of ANTH or ANTH(Br) with BnI, using either a high-temperature Cu-/NaSO-promoted reaction or via a room-temperature photochemical reaction. Its structure was elucidated by NMR spectroscopy and single crystal X-ray diffractometry. The latter revealed no π-π interaction between neighboring ANTH cores.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!